
Kriptografi Atasi Zarah Digital Signature
(KAZ-SIGN)

Algorithm Specifications and Supporting Documentation

Muhammad Rezal Kamel Ariffin1 Nur Azman Abu2 Terry Lau Shue Chien3

Zahari Mahad1 Liaw Man Cheon4 Amir Hamzah Abd Ghafar1

Nurul Amiera Sakinah Abdul Jamal1

1Institute for Mathematical Research, Universiti Putra Malaysia
2Faculty of Information & Communication Technology, Universiti Teknikal Malaysia Melaka

3Faculty of Computing & Informatics, Multimedia University Malaysia
4Antrapolation Technology Sdn. Bhd., Selangor, Malaysia

Table of Contents
1 INTRODUCTION 1
2 THE DESIGN IDEALISME 1
3 SECOND ORDER DISCRETE LOGARITHM PROBLEM (2-DLP) 2
4 COMPLEXITY OF SOLVING THE 2-DLP 2
5 COMPLEXITY PRE-DETERMINING PARAMETERS TO SATISY 2-DLP 2
6 THE HIDDEN NUMBER PROBLEM (HNP) (Boneh and Venkatesan, 2001) 3
7 THE HERMANN MAY REMARKS (Herrmann and May, 2008) 3
8 THE KAZ-SIGN DIGITAL SIGNATURE ALGORITHM 4

8.1 Background 4
8.2 Utilized Functions 4
8.3 System Parameters 4
8.4 KAZ-SIGN Algorithms 4

9 THE DESIGN RATIONALE 8
9.1 Proof of correctness (Verification steps 16, 17, 18 and 19) 8
9.2 Proof of correctness (Verification steps 2, 3, 4 and 5: KAZ-SIGN digital

signature forgery detection procedure type-1) 8
9.3 Proof of correctness (Verification steps 8, 9, 10, 11, 12 and 13: KAZ-SIGN

digital signature forgery detection procedure type-2) 8
9.4 Another complexity analysis to solve the 2-DLP 9
9.5 Modular linear equation of S2. 9
9.6 Implementation of the Hidden Number Problem 10

10 SPECIFICATION OF KAZ-SIGN 10
11 IMPLEMENTATION AND PERFORMANCE 10

11.1 Key Generation, Signing and Verification Time Complexity 10
11.2 Parameter sizes 10
11.3 Key Generation, Signing and Verification Ease of Implementation 11
11.4 Key Generation, Signing and Verification Empirical Performance Data 11

12 ADVANTAGES AND LIMITATIONS 12
12.1 Key Length 12
12.2 Speed 12
12.3 No verification failure 12
12.4 Limitation 12

12.4.1 Based on unknown problem, the Second Order Discrete Logarithm
Problem (2-DLP) 13

13 CLOSING REMARKS 13
14 ILLUSTRATIVE FULL SIZE TEST VECTORS -1 14

i

15 ILLUSTRATIVE FULL SIZE TEST VECTORS -2 17
16 ILLUSTRATIVE FULL SIZE TEST VECTORS -3 20

ii

Name of the proposed cryptosystem: KAZ-SIGN

Principal submitter: Muhammad Rezal Kamel Ariffin
Institute for Mathematical Research
Universiti Putra Malaysia
43400 UPM Serdang
Malaysia
Email: rezal@upm.edu.my
Phone: +60123766494

Auxilliary submitters: Nor Azman Abu
Terry Lau Shue Chien
Zahari Mahad
Liaw Man Cheon
Amir Hamzah Abd Ghafar
Nurul Amiera Sakinah Abdul Jamal

Inventor of the cryptosystem: Muhammad Rezal Kamel Ariffin

Owner of the cryptosystem: Muhammad Rezal Kamel Ariffin

Alternative point of contact: Amir Hamzah Abd Ghafar
Institute for Mathematical Research
Universiti Putra Malaysia
43400 UPM Serdang
Malaysia
Email: amir hamzah@upm.edu.my
Phone: +60132723347

iii

1. INTRODUCTION

The proposed KAZ Digital Signature scheme, KAZ-SIGN (in Malay Kriptografi Atasi
Zarah - translated literally “cryptographic techniques overcoming particles”; particles here
referring to the photons) is built upon the hard mathematical problem coined as the Sec-
ond Order Discrete Logarithm Problem (2-DLP). The idea revolves around the difficulty
of reconstructing a Discrete Logarithm Problem (DLP) from a given parameter in order to
proceed to identify the secret parameter. The target of the KAZ-SIGN design is to be a
quantum resistant digital signature candidate with short verification keys and signatures,
verifying correctly approximately 100% of the time, based on simple mathematics, having
fast execution time and a potential candidate for seamless drop-in replacement in current
cryptographic software and hardware ecosystems.

2. THE DESIGN IDEALISME

(i) To be based upon a problem that could be proven analytically to require exponential
time to be solved;

(ii) To be able to prove analytically that the cryptosystem is indeed resistant towards
quantum computers;

(iii) To utilize problems mentioned in point (i) above in its full spectrum without having
to induce “weaknesses” in order for a trapdoor to be constructed;

(iv) To use “simple” mathematics in order to achieve maximum simplicity in design,
such that even practitioners with limited mathematical background will be able to
understand the arithmetic;

(v) Achieve 128 and 256-bit security with key length roughly equivalent to the non-
quantum secure Elliptic Curve Cryptosystem (ECC);

(vi) To achieve maximum speed upon having simplicity in design and short key length;

(vii) To have a sufficiently large signature space;

(viii) The computation overhead for both signing and verification increases slightly even if
the key size increases in the future;

(ix) To be able to be mounted on hardware with ease;

(x) The plaintext to signature expansion ratio is kept to a minimum.

One of our key strategy to obtain items (i) - (v) was by utilizing our defined Second Order
Discrete Logarithm Problem (2-DLP). It is defined in the following section.

1

3. SECOND ORDER DISCRETE LOGARITHM PROBLEM (2-DLP)

Let N be a composite number, g a random prime in ZN of order Gg where at most Gg ≈ Nδ

for δ ∈ (0,1) and δ → 0. Choose a random prime Q ∈ Zφ(N) of order GQ, where GQ ≈
φ(N)ε for ε → 1. That is, choose Q with a large order in Zφ(N). Such Q, has its own natural
order in Zφ(Gg). Let that order be denoted as GQg. We can observe the natural relation given
by QGQg ≡ 1 (mod Gg) and φ(N)≡ 0 (mod Gg).

Then choose a random integer x ∈ Zφ(Gg) where x ≈ φ(Gg). Suppose from the equation
given by

gQx (mod φ(N)) ≡ A (mod N) (1)

one has solved the Discrete Logarithm Problem (DLP) upon equation (1) in polynomial
time on a classical computer and obtained the value X where Qx ̸≡ X (mod φ(N)) and
gX ≡ A (mod N). The relation Qx ̸≡ X (mod φ(N)) would result in the non-existence of
the discrete logarithm solution for Qx ≡ X (mod φ(N)).

The 2-DLP is, upon given the values (A,g,N,Q), one is tasked to determine x ∈ Zφ(Gg)

where x ≈ φ(Gg) such that the relation (1) holds.

4. COMPLEXITY OF SOLVING THE 2-DLP

Let nφ(Gg) = ℓ(φ(Gg)) be the bit length of φ(Gg). The complexity to obtain x is O(2nφ(Gg)).
When deploying Grover’s algorithm on a quantum computer, the complexity to obtain x is

O(2
n
φ(Gg)

2). In other words, since φ(Gg)≈ Gg ≈ Nδ , the complexity to obtain x is O(Nδ).
When deploying Grover’s algorithm on a quantum computer, the complexity to obtain x is
O(N

δ

2).

5. COMPLEXITY PRE-DETERMINING PARAMETERS TO SATISY 2-DLP

Obtaining the relation Qx ̸≡ X (mod φ(N))

Let Qx ≡ T1 (mod φ(N)). From the predetermined order of g ∈ ZN , during the process of
solving the DLP upon (1), a collision would occur prior to the full cycle of g. As such, the
process of solving the DLP upon (1) to obtain X ≈ Nδ would occur in polynomial time on
a classical computer. And since T1 < φ(N) and T1 ≈ N, the relation Qx ̸≡ X (mod φ(N))
will hold.

2

6. THE HIDDEN NUMBER PROBLEM (HNP) (Boneh and Venkatesan, 2001)

Fix p and u. Let Oα,g(x) be an oracle that upon input x computes the most u significant
bits of αgx (mod p). The task is to compute the hidden number α (mod p) in expected
polynomial time when one is given access to the oracle Oα,g(x). Clearly, one wishes to
solve the problem with as small u as possible. Boneh and Venkatesan (2001) demonstrated
that a bounded number of most significant bits of a shared secret are as hard to compute as
the entire secret itself.

The initial idea of introducing the HNP is to show that finding the u most significant bits
of the shared key in the Diffie-Hellman key exchange using users public key is equivalent
with computing the entire shared secret key itself.

7. THE HERMANN MAY REMARKS (Herrmann and May, 2008)

We will now observe two remarks by Herrmann and May. It discusses the ability and
inability to retrieve variables from a given modular multivariate linear equation. But before
that we will put forward a famous theorem of Minkowski that relates the length of the
shortest vector in a lattice to the determinant (see Hoffstein et al. (2008)).

Theorem 1. In an ω-dimensional lattice, there exists a non-zero vector v with

∥v∥ ≤
√

ω det(L)
1
ω

In lattices with fixed dimension we can efficiently find a shortest vector, but for arbitrary
dimensions, the problem of computing a shortest vector is known to be NP-hard under ran-
domized reductions (see Ajtai (1998)). The LLL algorithm, however, computes in polyno-
mial time an approximation of the shortest vector, which is sufficient for many applications.

Remark 1. Let f (x1,x2, . . . ,xk) = a1x1 + a2x2 + . . .+ akxk be a linear polynomial. One
can hope to solve the modular linear equation f (x1,x2, . . . ,xk)≡ 0 (mod N), that is to be
able to find the set of solutions (y1,y2, . . . ,yk) ∈ Zk

N , when the product of the unknowns are
smaller than the modulus. More precisely, let Xi be upper bounds such that |yi| ≤ Xi for
1, . . . ,k. Then one can roughly expect a unique solution whenever the condition ∏i Xi ≤ N
holds (see Herrmann and May (2008)). It is common knowledge that under the same
condition ∏i Xi ≤ N the unique solution (y1,y2, . . . ,yk) can heuristically be recovered by
computing the shortest vector in an k-dimensional lattice by the LLL algorithm. In fact,
this approach lies at the heart of many cryptographic results (see Bleichenbacher and May
(2006); Girault et al. (1990) and Nguyen (2004)).

We would like to provide the reader with the conjecture and remark given in Herrmann and
May (2008).

3

Conjecture 1. If in turn we have ∏i Xi ≥ N1+ε then the linear equation f (x1,x2, . . . ,xk) =

∑
k
i=1 aixi ≡ 0 (mod N) usually has Nε many solutions, which is exponential in the bit-size

of N.

Remark 2. From Conjecture 1, there is no hope to find efficient algorithms that in general
improve on this bound, since one cannot even output all roots in polynomial time.

8. THE KAZ-SIGN DIGITAL SIGNATURE ALGORITHM

8.1 Background

This section discusses the construction of the KAZ-SIGN scheme. We provide information
regarding the key generation, signing and verification procedures. But first, we will put
forward functions that we will utilize and the system parameters for all users.

8.2 Utilized Functions

Let H(·) be a hash function. Let DLog(·) be the discrete anti-logarithm function. That is,
from gx ≡ β (mod N), upon given (β ,g,N) one computes x = DLogg(β (mod N)). Let
φ(·) be the usual Euler-totient function. Let ℓ(·) be the function that outputs the bit length
of a given input.

8.3 System Parameters

From the given security parameter k, determine parameter j. Next generate a list of the
first j-primes larger than 2, P = {pi} j

i=1. Let N = ∏
j
i=1 pi. As an example, if j = 43, N is

256-bits. Let n = ℓ(N) be the bit length of N. Choose a random prime in g ∈ ZN of order
Gg where at most Gg ≈ Nδ for a chosen value of δ ∈ (0,1) and δ → 0. Choose a random
prime R ∈ Zφ(N) of order GR, where GR ≈ φ(N)ε for ε → 1. That is, choose R with a
large order in Zφ(N). Let nGR = ℓ(GR) be the bit length of GR. Such R, has its own natural
order in Zφ(Gg). Let that order be denoted as GRg. We can observe the natural relation
given by QGRg ≡ 1 (mod Gg) where φ(N)≡ 0 (mod Gg) and φ(Gg)≡ 0 (mod GRg). Let
nφ(Gg) = ℓ(φ(Gg)) be the bit length of φ(Gg) and nφ(GRg) = ℓ(φ(GRg)) be the bit length of
GRg. The system parameters are (g,n,nφ(Gg),N,φ(N),φ(φ(N)),R,Gg).

8.4 KAZ-SIGN Algorithms

The full algorithms of KAZ-SIGN are shown in Algorithms 1, 2, and 3.

4

Algorithm 1 KAZ-SIGN Key Generation Algorithm

Input: System parameters (g,n,nφ(Gg),N,φ(N),φ(φ(N)),R,Gg)
Output: Public verification key, V , and private signing key, α

1: Choose random α ∈ (2nφ(Gg)−2,2nφ(Gg)−1).
2: Compute verification key, V ≡ gRα (mod φ(N)) (mod N).
3: Compute the discrete logarithm v = DLogg(V (mod N)).
4: Compute z1 = v−Rα (mod φ(N)).
5: if z1 ≡ 0 (mod φ(N)) then
6: repeat steps 1 till 4.
7: else continue step 9
8: end if
9: Compute the discrete logarithm z2 = DLogR(v (mod φ(N))).

10: if z2 has a solution then
11: repeat steps 1 till 9.
12: else continue step 14
13: end if
14: Output public verification key V and private signing key α .

Algorithm 2 KAZ-SIGN Signing Algorithm

Input: System parameters (g,n,nφ(Gg),N,φ(N),φ(φ(N)),R,Gg), private signing key, α ,
and message to be signed, m ∈ ZN

Output: Signatures, (S1,S2), salt, σ .
1: Generate a random salt, σ ∈ {0,1}32 corresponding to message, m.
2: Compute the hash value of the message, h = H(m∥σ).
3: Choose random ephemeral prime r ∈ (2nφ(Gg)−2,2nφ(Gg)−1).
4: Compute S0 ≡ gRr (mod φ(N)) (mod N).
5: Compute the discrete logarithm S1 = DLogg(S0 (mod N)).
6: Compute z3 = S1 −Rr ≡ 0 (mod φ(N)).
7: if z3 = S1 −Rr ≡ 0 (mod φ(N)) then
8: Repeat steps 3 till 6.
9: else Continue step 11

10: end if
11: Compute the discrete logarithm z4 = DLogR(S1 (mod φ(N))).
12: if z4 has a solution then
13: Repeat steps 3 till 11.
14: else Continue step 16
15: end if
16: Compute S2 ≡ (α +h)r−1 (mod φ(φ(N))).
17: Compute the discrete logarithm v = DLogg(V (mod N)).
18: Compute the discrete logarithm S2 f = DLogS1

(vRh (mod φ(N))).

5

19: if S2 ≡ S2 f (mod φ(φ(N))) then
20: Repeat steps 3 till 18
21: else Continue step 23.
22: end if
23: Compute αF = DLogR(v (mod Gg)).
24: Compute W0 ≡ (αF +h)S−1

2 (mod φ(φ(N))).
25: if W0 does not exist then
26: Repeat steps 1 till 24.
27: else Continue 29.
28: end if
29: Compute w1 ≡ gS1 (mod N).
30: Compute w2 ≡ gRW0 (mod φ(N)) (mod N).
31: if w1 = w2 then
32: Repeat steps 1 till 30.
33: else Continue 35.
34: end if
35: Output signature (S1,S2), salt, σ and destroy r.

Steps 17, 18, 19 and 20 during signing are known as the KAZ-SIGN digital signature
forgery detection procedure type-1. While steps 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32
are known as the KAZ-SIGN parameter suitability detection procedure.

6

Algorithm 3 KAZ-SIGN Verification Algorithm

Input: System parameters (g,n,nφ(Gg),N,φ(N),φ(φ(N)),R,Gg), public verification key,
V , message, m, signatures, (S1,S2) and salt corresponding to M, σ .

Output: Accept or reject
1: Compute the hash value of the message and its corresponding salt, σ to be verified,

h = H(m∥σ).
2: Compute the discrete logarithm v = DLogg(V (mod N)).
3: Compute the discrete logarithm S2 f = DLogS1

(vRh (mod φ(N))).
4: if S2 ≡ S2 f (mod φ(φ(N))) then
5: reject signature ⊥
6: else continue step 9
7: end if
8: Compute αF = DLogR(v (mod Gg)).
9: Compute W0 ≡ (αF +h)S−1

2 (mod φ(φ(N))).
10: Compute w1 ≡ gS1 (mod N).
11: Compute w2 ≡ gRW0 (mod φ(N)) (mod N).
12: if w1 = w2 then
13: reject signature ⊥
14: else continue step 16
15: end if
16: Compute y1 ≡ gSS2

1 (mod φ(N)) (mod N).
17: Compute y2 ≡ vRh (mod φ(N)) (mod N).
18: if y1 = y2 then
19: accept signature
20: else reject signature ⊥
21: end if

Steps 2, 3, 4 and 5 during verification are known as the KAZ-SIGN digital signature
forgery detection procedure type-1. While steps 8, 9, 10, 11, 12 and 13 are known as the
KAZ-SIGN digital signature forgery detection procedure type-2.

7

9. THE DESIGN RATIONALE

9.1 Proof of correctness (Verification steps 16, 17, 18 and 19)

gSS2
1 ≡ gRr(α+h)r−1

≡ gRα Rh
≡ vRh (mod φ(N)) (mod N).

As such the verification process does indeed provide an indication that the signature is
indeed from an authorized sender with the private signing key α .

9.2 Proof of correctness (Verification steps 2, 3, 4 and 5: KAZ-SIGN digital signa-
ture forgery detection procedure type-1)

In order to comprehend the rationale behind steps 2, 3, 4 and 5, one has to observe that due
to small parameters, an adversary would be able to compute v = DLogg(V (mod N)) and
S2 f = DLogS1

(vRh (mod φ(N))) in polynomial time on a classical computer. Observe the
following,

gS
S2 f
1 ≡ gvRh

≡V Rh (mod φ(N)) (mod N).

Hence, the verifier would have accepted the pair (S1,S2 f) as a legitimate KAZ-SIGN signa-
ture pair. In retrospect, the verifier could also compute the values v and S2 f in polynomial
time on a classical computer. As such, steps 2, 3, 4 and 5 during verification will iden-
tify an attempt to forge S2, and upon identifying such situation, the verifier can reject the
signature.

9.3 Proof of correctness (Verification steps 8, 9, 10, 11, 12 and 13: KAZ-SIGN digital
signature forgery detection procedure type-2)

In order to comprehend the rationale behind steps 8, 9, 10, 11, 12 and 13, one has to ob-
serve that due to small parameters, an adversary would be able to compute αF = DLogR(v
(mod Gg)) in polynomial time on a classical computer. If an adversary utilizing a random
r constructs the corresponding S1 and then computes S2 f2 = (αF +h)r−1 (mod φ(φ(N)))
for the hash value of a message m that the adversary wishes to forge a signature upon it, and
then upon relaying the parameters (S1,S2 f2) to the verifier, we can observe the following
during verification,

gS
S2 f2
1 ≡ gRr(αF+h)r−1

≡ gRαF Rh
≡ gvRh

≡V Rh (mod φ(N)) (mod N)

Hence, the verifier would have accepted the pair (S1,S2 f2) as a legitimate KAZ-SIGN sig-
nature pair.

As such, from steps 8, 9, 10, 11, 12 and 13 during verification, the verifier will identify
an attempt to forge S2. From steps 8, 9, 10, 11, 12 and 13 during verification, the verifier

8

would obtain the following

gRW0 (mod φ(N)) ≡ gR
(αF+h)r

αF+h (mod φ(N)) ≡ gRr
≡ gS1 (mod N).

That is, w2 = w1. Hence, the verifier would reject the signature.

On the other hand, if the verifier obtains a valid signature pair, due from steps 23, 24, 25,
26, 27, 28, 29, 30, 31 and 32 from the signing procedure and from steps 8, 9, 10, 11, 12
and 13 during the verification procedure, he will obtain the following

gRW0 (mod φ(N)) ≡ gR
(αF+h)r
(α+h) (mod φ(N)) ̸≡ gRr

≡ gS1 (mod N).

That is, w2 ̸= w1. Hence, the verifier would proceed to verify the signature.

9.4 Another complexity analysis to solve the 2-DLP

One has the relation gGg ≡ 1 (mod N). As such, from the value X < Gg obtained from
equation (1), one can construct the set of solutions given by T0 =X+Ggt for t = 0,1,2,3,
Now let Qx ≡ T1 (mod φ(N)). Following through, since T1 is an element from the set of
solutions, one can have the relation

tT1 =
T1 −X

Gg
.

Since Gg,X ≈Nδ and φ(N)≈N, the complexity to obtain tT1 is O(N1−δ). When deploying
Grover’s algorithm on a quantum computer, the complexity to obtain tT1 is O(N

1−δ

2). This
complexity is much higher than the complexity to guess x in equation (1), which is O(Nδ)
for δ → 0.

9.5 Modular linear equation of S2.

Let GRg be the order of R in ZGg where RGRg ≡ 1 (mod Gg).

We begin by analyzing αF = DLogR(v (mod Gg)) which implies RαF ≡ v (mod Gg) and
consequently that αF ≡ α0 (mod GRg).

We continue this direction by analyzing rF = DLogR(S1 (mod Gg)) which implies RrF ≡
S1 (mod Gg) and consequently that rF ≡ r0 (mod GRg).

From the above, observe that one can analyze S2 as follows,

S2 ≡ (α +h)r−1 ≡ (α0 +h)r−1
0 (mod GRg)

9

which implies
r0α − (α0 +h)r+hr0 ≡ 0 (mod GRg). (2)

Let α̂ be the upper bound for α and r̂ be the upper bound for r. From Conjecture 1, if one
has the situation where α̂ r̂ ≫ GRg, then there is no efficient algorithm to output all the roots
of (2). That is, (2) usually has GRg many solutions, which is exponential in the bit-size of
GRg.

To this end, we have both α̂ and r̂ ≈ 2nφ(Gg) . Thus α̂ r̂ ≈ 22nφ(Gg) . And since we have chosen
the element R ∈ Zφ(Gg) with order GRg, where GRg is at most 2nφ(Gg) , we can conclude that
α̂ r̂ ≫ GRg. This implies, there is no efficient algorithm to output all the roots of (2).

9.6 Implementation of the Hidden Number Problem

From S2 to obtain α or r, is the hidden number problem.

10. SPECIFICATION OF KAZ-SIGN

The following is the security specification for δ = 0.3.

Number of primes in P, j n = ℓ(N) Total security level, k
68 458 128

100 738 192
125 970 256

Table 1

11. IMPLEMENTATION AND PERFORMANCE

11.1 Key Generation, Signing and Verification Time Complexity

It is obvious that the time complexity for all three procedures is in polynomial time.

11.2 Parameter sizes

We provide here information on size of the key and signature based on security level infor-
mation from Table 2 (for δ = 0.3).

10

NIST
Security

Level

Number of
primes
in P, j

Security
level,

k

Length of
parameter
N (bits)

Key size,
(V,N) (bits)

Signature Size
(S1,S2)
(bits)

ECC key
size

1 68 128 458 916 590 256
3 100 192 738 1476 930 384
5 125 256 970 1940 1220 521

Table 2

In the direction of the research, we also make comparison to ECC key length for the three
NIST security levels. KAZ-SIGN key length did not achieve its immediate target of having
approximately the same key length as ECC, but further research might find means and
ways.

11.3 Key Generation, Signing and Verification Ease of Implementation

The algebraic structure of KAZ-SIGN has an abundance of programming libraries available
to be utilized. Among them are:

1. GNU Multiple Precision Arithmetic Library (GMP); and

2. Standard C libraries.

11.4 Key Generation, Signing and Verification Empirical Performance Data

In order to obtain benchmarks, we evaluate our reference implementation on a machine us-
ing GCC Compiler Version 6.3.0 (MinGW.org GCC-6.3.0-1) on Windows 10 Pro, Intel(R)
Core(TM) i7-4710HQ CPU @ 2.50GHz and 8.00 GB RAM (64-bit operating system, x64-
based processor).

We have the following empirical results when conducting 100 key generations, 100 sign-
ings and 100 verifications:

Time (ms)
Security level

Key generation Signing Verification
128 - KAZ458 1406 9955 2696
192 - KAZ738 4280 20822 10306
256 - KAZ970 8276 43319 22650

Table 3

11

12. ADVANTAGES AND LIMITATIONS

As we have seen, KAZ-SIGN can be evaluated through:

1. Key length

2. Speed

3. No verification failure

12.1 Key Length

KAZ-SIGN key length is comparable to non-post quantum algorithms such as ECC and
RSA. For 256-bit security, the KAZ-SIGN key size is 970-bits. ECC would use 521-bit
keys and RSA would use 15360-bit keys.

12.2 Speed

KAZ-SIGN’s speed analysis results stem from the fact that it has short key length to achieve
256-bit security plus its textbook complexity running time for both signing and verifying
is O(n3) where parameter n here is the input length.

12.3 No verification failure

It is apparent that the execution of KAZ-SIGN digital signature forgery detection proce-
dure type-1 within steps 17, 18, 19 and 20 together with KAZ-SIGN parameter suitability
detection procedure within steps 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32 during signing
will enable the verification computational process by the recipient to verify or reject a dig-
ital signature that was received by the recipient with probability equal to 1. That is, the
probability of verification failure is 0. This is achievable by the recipient as per execution
of KAZ-SIGN digital signature forgery detection procedure type-1 in steps 2, 3, 4 and 5
during verification and the KAZ-SIGN digital signature forgery detection procedure type-2
in steps 8, 9, 10, 11, 12 and 13 during verification.

12.4 Limitation

As we have seen, limitation of KAZ-SIGN can be evaluated through:

1. Based on unknown problem, the Second Order Discrete Logarithm Problem (2-DLP)

12

12.4.1 Based on unknown problem, the Second Order Discrete Logarithm Problem
(2-DLP)

The 2-DLP is not a known hard mathematical problem which is quantum resistant and
is subject to future cryptanalysis success in solving the defined challenge either with a
classical or quantum computer.

13. CLOSING REMARKS

The KAZ-SIGN digital signature exhibits properties that might result in it being a desirable
post quantum signature scheme. In the event that new forgery methodologies are found, as
long as the procedure can also be done by the verifier, then one can add the new forgery
methodology into the verification procedure. At the same time, the same forgery methodol-
ogy can be inserted into the signing procedure in order to eliminate any chances the signer
will produce a signature that will be rejected.

To this end, the security of the 2-DLP is an unknown fact. We opine that, the acceptance
of 2-DLP as a potential quantum resistant hard mathematical problem will come hand in
hand with a secure cryptosystem designed upon it. We welcome all comments on the KAZ-
SIGN digital signature, either findings that nullify its suitability as a post quantum digital
signature scheme or findings that could enhance its deployment and use case in the future.

Finally, we would like to put forward our heartfelt thanks to Prof. Dr. Abderrahmane
Nitaj from Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Basse Nor-
mandie, France for insights, comments, and friendship throughout the process.

13

14. ILLUSTRATIVE FULL SIZE TEST VECTORS -1

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 68. That is, P = {3,5,7, . . . ,347}. This is the case where
adversary is not able to generate S2 f (i.e. there does not exist S2 f).

N :
37470874733837919416563211326754079989324849463818175868172713496859968
4366339106336802166494168058067745412894332797884687187786349732565

≈ 2458

φ(N) :
71467427390759841729059757466289459181369050713019533645557376916391119
997637068708795979336636964345506399166398464000000000000000000000

≈ 2455

g :
37337841543021527447924528338800360404907597638975774468833719703953986
6404242453339408434043624886555705625475964858484406506541054175157

Gg :
4647420081498856225747178719543948128000

≈ 2132 ≈ 20.29(458) ≈ N0.3

R :
56649467415797035426833950941618577643554746014304810200407453298702899
388975013642190017670254089031691771627671453016895621451465031029

GR :
37780750794040061026159837604616367499689184180646736913638079474868225
742729956556800000000000000000000

≈ 2345 ≈ 20.76(455)
φ(N)0.76

14

α :
340220954190025314480923429400932119169

αF :
728864143169

V :
25866442924975776240800138071249435949798661733028100730316281988378898
8455025085636730013602437867546222655844280985350098854390051978397

v :
780840645036182383233589252746450007669

h :
62472778471879427263483730054672741426741022889380468967830179446174955
835497

r :
207380663228983046860356253517041976201

S0 :
92594056727630943065724157541020972855919594994390865675224423794137249
153868709944441146309582451052880451950091230577526489649311892292

S1 :
1058126240615153382953495372797133459029

S2 :
83442359262307195180000653887392692592583010904033713996707826885970980
73438574391231665570921221497761840498601574481688393337798045466

S2 f (Verification Step 2) :
FAIL – No solution exists

15

y1 and y2 :
17306439727863129198373779525929724417942036346053896317043959749686763366
5844431367400376683379429243159432265465219336003824498498807927

W0 :
17286294947364018101572702012771789874609996309106504341604534630015632312
67461775940700721947794210300874606811123675222530174448740201

w1 :
92594056727630943065724157541020972855919594994390865675224423794137249
153868709944441146309582451052880451950091230577526489649311892292

w2 :
21652496538040227187536901990577182106963991423270000765167114158530835
0987093706203694781142283948857387689677788848554952213236236901117

16

15. ILLUSTRATIVE FULL SIZE TEST VECTORS -2

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 68. That is, P = {3,5,7, . . . ,347}. This is the case where
adversary is able to generate S2 f (i.e. there exist S2 f).

N :
37470874733837919416563211326754079989324849463818175868172713496859968
4366339106336802166494168058067745412894332797884687187786349732565

≈ 2458

φ(N) :
71467427390759841729059757466289459181369050713019533645557376916391119
997637068708795979336636964345506399166398464000000000000000000000

≈ 2455

g :
37304120913596118715849626306921788860798719531523626407132977857729769
4144095982412480254681566450845594343830692026077784088120209764671

Gg :
144070022526464542998162540305862391968000

≈ 2137 ≈ 20.28(458) ≈ N0.3

R :
48009600612838362700633034693441169039454201790251633157012885216893233
384717393660039087393771687490785432015694879886008633919074065757

17

GR :
14295419219366509577465884499044030945828339960244711264619813855355544
87562755112960000000000000000000

≈ 2340 ≈ 20.75(455)
φ(N)0.75

α :
8034572292773598387359564167680432087899

α f :
190961639579

V :
10825917718678223035489945287240012089735021602921762885295644980632293
8711000716280591479040479284291828233503073089074694740535263982846

v :
112315556753750599540886433443945935169893

h :
11203892680223557709740725439319621629913778086884094445517066373243819
8835556

r :
5620952881010357279341313863390721974061

S0 :
12533958362578133287158298848952793749023178033447093397720380949356865
5525730260805043901724387927678854753719375776634484845658921206341

S1 :
72471565937881871508311386524835432815757

18

S2 f (Verification Step 2) :
55608806691716417108512762165732374922077646177335236156463297105903365370
25691308171068741436716707995

y1 and y2 (to test verifying the pair (S1,S2 f)) :

10898281221688854800601945885991246103411757822659989701436235923538032636
6960617139215804324619499615016639643333282550459714274579132611

W0 (to test verifying the pair (S1,S2 f)) :

17622859178162311055658786334742497642292098326170821208752287709688405062
88325216019280738539998040469150184994334588930326738008561773

w1 (to test verifying the pair (S1,S2 f)) :

12533958362578133287158298848952793749023178033447093397720380949356865552
5730260805043901724387927678854753719375776634484845658921206341

w2 (to test verifying the pair (S1,S2 f)) :

32062266903882074460440261931334658683743662120857792272069494851529939101
019985563303657083214415418192628131639130876596859188821734696

19

16. ILLUSTRATIVE FULL SIZE TEST VECTORS -3

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 68. That is, P = {3,5,7, . . . ,347}. This is the case where
adversary is able to generate S2 f (i.e. utilizing αF and w1 = w2).

N :
37470874733837919416563211326754079989324849463818175868172713496859968
4366339106336802166494168058067745412894332797884687187786349732565

≈ 2458

φ(N) :
71467427390759841729059757466289459181369050713019533645557376916391119
997637068708795979336636964345506399166398464000000000000000000000

≈ 2455

g :
37264577947418073527219311012684352466996219161009705980277080418489051
1847829402365916586208346809476938285965589213586238120015627468219

Gg :
48023340842154847666054180101954130656000

≈ 2136 ≈ 20.29(458) ≈ N0.3

R :
66664243434711203266642091153713838731668193722745467827816912424088057
245654978843244510888654644295974331443262963345499491933368065623

20

GR :
13223262777914021359155943161615728624891214463226357919773327816203879
0099554847948800000000000000000000

≈ 2346 ≈ 20.75(455)
φ(N)0.75

α :
5396936944544249571843104215168603175869

α f :
203216267869

V :
19762686571584032493214033226823173499894688211433473673804640625975773
8166093844802119874459317442111220512979737981198693346986952950589

v :
10143251623244780121358455763949848780663

h :
64925216052513933178304100917394902016811000744960782360061577046930499
680354

r :
4829484744733867592063978505815779164799

S0 :
29395023698141534807227647445754725611614164046423154550912558244017913
9756030692431076218572413238788014308412806755401304468164436348489

S1 :
33311966555198896881593305636973400355687

21

S2 f2 (Forged S2 using αF) :
49394455518330854066267123858345281195950377849252128105736679468794256132
03257021817780396746869541681870862579115899901797521297981377

y1 and y2 (to test verifying the pair (S1,S2 f2
)) :

21926358402111017410539995740808256881444870205557190113824238748231410617
1311993684854549798821212658714509919141728992868117455597263794

W0 (to test verifying the pair (S1,S2 f2
)) :

4829484744733867592063978505815779164799

w1 (to test verifying the pair (S1,S2 f2
)) :

29395023698141534807227647445754725611614164046423154550912558244017913975
6030692431076218572413238788014308412806755401304468164436348489

w2 (to test verifying the pair (S1,S2 f2
)) :

29395023698141534807227647445754725611614164046423154550912558244017913975
6030692431076218572413238788014308412806755401304468164436348489

22

References

Ajtai, M. (1998). The shortest vector problem in L2 is NP-hard for randomized reductions.
In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages
10–19.

Bleichenbacher, D. and May, A. (2006). New attacks on RSA with small secret CRT-
exponents. In Public Key Cryptography-PKC 2006: 9th International Conference on
Theory and Practice in Public-Key Cryptography, New York, NY, USA, April 24-26,
2006. Proceedings 9, pages 1–13. Springer.

Boneh, D. and Venkatesan, R. (2001). Hardness of computing the most significant bits
of secret keys in Diffie-Hellman and related schemes. In Advances in Cryptology-
CRYPTO’96: 16th Annual International Cryptology Conference Santa Barbara, Cali-
fornia, USA August 18–22, 1996 Proceedings, pages 129–142. Springer.

Girault, M., Toffin, P., and Vallée, B. (1990). Computation of approximate L-th roots
modulo n and application to cryptography. In Advances in Cryptology—CRYPTO’88:
Proceedings 8, pages 100–117. Springer.

Herrmann, M. and May, A. (2008). Solving linear equations modulo divisors: On factoring
given any bits. In Advances in Cryptology-ASIACRYPT 2008: 14th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Melbourne,
Australia, December 7-11, 2008. Proceedings 14, pages 406–424. Springer.

Hoffstein, J., Pipher, J., Silverman, J. H., and Silverman, J. H. (2008). An introduction to
mathematical cryptography, volume 1. Springer.

Nguyen, P. Q. (2004). Can we trust cryptographic software? Cryptographic flaws in GNU
Privacy Guard v1. 2.3. In Advances in Cryptology-EUROCRYPT 2004: International
Conference on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004. Proceedings 23, pages 555–570. Springer.

23

