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1. INTRODUCTION

The proposed KAZ Digital Signature scheme, KAZ-SIGN (in Malay Kriptografi Atasi
Zarah - translated literally “cryptographic techniques overcoming particles”; particles here
referring to the photons) is built upon the hard mathematical problem coined as the Mod-
ular Reduction Problem (MRP). The idea revolves around the difficulty of reconstructing
an unknown parameter from a given modular reducted value of that parameter. The target
of the KAZ-SIGN design is to be a quantum resistant digital signature candidate with short
verification keys and signatures, verifying correctly approximately 100% of the time, based
on simple mathematics, having fast execution time and a potential candidate for seamless
drop-in replacement in current cryptographic software and hardware ecosystems.

2. THE DESIGN IDEALISME

(i) To be based upon a problem that could be proven analytically to require exponential
time to be solved;

(ii) To be able to prove analytically that the cryptosystem is indeed resistant towards
quantum computers;

(iii) To utilize problems mentioned in point (i) above in its full spectrum without having
to induce “weaknesses” in order for a trapdoor to be constructed;

(iv) To use “simple” mathematics in order to achieve maximum simplicity in design,
such that even practitioners with limited mathematical background will be able to
understand the arithmetic;

(v) Achieve 128 and 256-bit security with key length roughly equivalent to the non-
quantum secure Elliptic Curve Cryptosystem (ECC);

(vi) To achieve maximum speed upon having simplicity in design and short key length;

(vii) To have a sufficiently large signature space;

(viii) The computation overhead for both signing and verification increases slightly even if
the key size increases in the future;

(ix) To be able to be mounted on hardware with ease;

(x) The plaintext to signature expansion ratio is kept to a minimum.

One of our key strategy to obtain items (i) - (v) was by utilizing our defined Modular
Reduction Problem (MRP). It is defined in the following section.
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3. MODULAR REDUCTION PROBLEM (MRP)

Let N = ∏
j
i=1 pi be a composite number and n = ℓ(N). Let pk be a factor of N. Choose

α ∈ (2n−1,N). Compute A ≡ α (mod pk).

The MRP is, upon given the values (A,N, pk), one is tasked to determine α ∈ (2n−1,N).

4. COMPLEXITY OF SOLVING THE MRP

Let npk = ℓ(pk) be the bit length of pk. The complexity to obtain α is O(2n−npk ). When de-

ploying Grover’s algorithm on a quantum computer, the complexity to obtain α is O(2
n−npk

2 ).
In other words, if pk ≈ Nδ , for some δ ∈ (0,1), the complexity to obtain α is O(N1−δ ).
When deploying Grover’s algorithm on a quantum computer, the complexity to obtain α is
O(N

1−δ

2 ).

5. THE HIDDEN NUMBER PROBLEM (HNP) (Boneh and Venkatesan, 2001)

Fix p and u. Let Oα,g(x) be an oracle that upon input x computes the most u significant
bits of αgx (mod p). The task is to compute the hidden number α (mod p) in expected
polynomial time when one is given access to the oracle Oα,g(x). Clearly, one wishes to
solve the problem with as small u as possible. Boneh and Venkatesan (2001) demonstrated
that a bounded number of most significant bits of a shared secret are as hard to compute as
the entire secret itself.

The initial idea of introducing the HNP is to show that finding the u most significant bits of
the shared key in the Diffie-Hellman key exchange using users public key is equivalent to
computing the entire shared secret key itself.

6. THE HERMANN MAY REMARKS (Herrmann and May, 2008)

We will now observe two remarks by Herrmann and May. It discusses the ability and
inability to retrieve variables from a given modular multivariate linear equation. But before
that we will put forward a famous theorem of Minkowski that relates the length of the
shortest vector in a lattice to the determinant (see Hoffstein et al. (2008)).

Theorem 1. In an ω-dimensional lattice, there exists a non-zero vector v with

∥v∥ ≤
√

ω det(L)
1
ω

In lattices with fixed dimension we can efficiently find a shortest vector, but for arbitrary
dimensions, the problem of computing a shortest vector is known to be NP-hard under ran-
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domized reductions (see Ajtai (1998)). The LLL algorithm, however, computes in polyno-
mial time an approximation of the shortest vector, which is sufficient for many applications.

Remark 1. Let f (x1,x2, . . . ,xk) = a1x1 + a2x2 + . . .+ akxk be a linear polynomial. One
can hope to solve the modular linear equation f (x1,x2, . . . ,xk)≡ 0 (mod N), that is to be
able to find the set of solutions (y1,y2, . . . ,yk) ∈ Zk

N , when the product of the unknowns are
smaller than the modulus. More precisely, let Xi be upper bounds such that |yi| ≤ Xi for
1, . . . ,k. Then one can roughly expect a unique solution whenever the condition ∏i Xi ≤ N
holds (see Herrmann and May (2008)). It is common knowledge that under the same
condition ∏i Xi ≤ N the unique solution (y1,y2, . . . ,yk) can heuristically be recovered by
computing the shortest vector in an k-dimensional lattice by the LLL algorithm. In fact,
this approach lies at the heart of many cryptographic results (see Bleichenbacher and May
(2006); Girault et al. (1990) and Nguyen (2004)).

We would like to provide the reader with the conjecture and remark given in Herrmann and
May (2008).

Conjecture 1. If in turn we have ∏i Xi ≥ N1+ε then the linear equation f (x1,x2, . . . ,xk) =

∑
k
i=1 aixi ≡ 0 (mod N) usually has Nε many solutions, which is exponential in the bit-size

of N.

Remark 2. From Conjecture 1, there is hardly a chance to find efficient algorithms that in
general improve on this bound, since one cannot even output all roots in polynomial time.

7. THE KAZ-SIGN DIGITAL SIGNATURE ALGORITHM

7.1 Background

This section discusses the construction of the KAZ-SIGN scheme. We provide information
regarding the key generation, signing and verification procedures. But first, we will put
forward functions that we will utilize and the system parameters for all users.

7.2 Utilized Functions

Let H(·) be a hash function. Let φ(·) be the usual Euler-totient function. Let ℓ(·) be the
function that outputs the bit length of a given input.

7.3 System Parameters

From the given security parameter k, determine parameter j. Next generate a list of the
first j-primes larger than 2, P = {pi} j

i=1. Let N = ∏
j
i=1 pi. As an example, if j = 43, N is

256-bits. Let n = ℓ(N) be the bit length of N. Choose a random prime in g ∈ ZN of order
Gg where at most Gg ≈ Nδ for a chosen value of δ ∈ (0,1) and δ → 0. That is, gGg ≡ 1
(mod N). Choose a random prime R ∈ Zφ(N) of order GR, where GR ≈ φ(N)ε for ε → 1.
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That is, choose R with a large order in Zφ(N). Let nGR = ℓ(GR) be the bit length of GR. Such
R, has its own natural order in Zφ(Gg). Let that order be denoted as GRg. We can observe the
natural relation given by RGRg ≡ 1 (mod Gg) where φ(N) ≡ 0 (mod Gg) and φ(Gg) ≡ 0
(mod GRg). Let nφ(Gg) = ℓ(φ(Gg)) be the bit length of φ(Gg) and nφ(GRg) = ℓ(φ(GRg)) be
the bit length of φ(GRg). Let q be a random k-bit prime where (q−1)2−1 is a prime. The
system parameters are (g,k,q,N,R,Gg,GRg,n,nφ(Gg)).

7.4 KAZ-SIGN Algorithms

The full algorithms of KAZ-SIGN are shown in Algorithms 1, 2, and 3.

Algorithm 1 KAZ-SIGN Key Generation Algorithm

Input: System parameters (g,k,q,N,R,Gg,GRg,n,nφ(Gg)).
Output: Public verification key pair, V = (V1,V2), and private signing key, α

1: Choose random α ∈ (2nφ(Gg)−2,2nφ(Gg)−1).
2: Compute public verification key, V1 ≡ α (mod GRgq).
3: Compute public verification key, V2 = H(α4 (mod q2)).
4: Output public verification key pair, V = (V1,V2) and private signing key α .

Algorithm 2 KAZ-SIGN Signing Algorithm

Input: System parameters (g,k,q,N,R,Gg,GRg,n,nφ(Gg)), private signing key, α , and
message to be signed, m ∈ ZN

Output: Signature pair, S = (S1,S2).
1: Compute the hash value of the message, h = H(m).
2: Choose random r ∈ (2nφ(Gg)−2,2nφ(Gg)−1).
3: Compute S1 ≡ r (mod GRgq2).
4: Compute GS1 = gcd(S1,GRg).
5: Compute GS12 = gcd(r,φ(GRgq2(G−1

S1 ))).
6: if GS12 < 100 then
7: Repeat from Step 2.
8: end if
9: Compute S2 ≡ GS1(α

S1 +h)r−1 (mod GRgq2).
10: if S2 does not exist then
11: Repeat from Step 2.
12: end if
13: Output signature pair, S = (S1,S2), and destroy r.
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Algorithm 3 KAZ-SIGN Verification Algorithm

Input: System parameters (g,k,q,N,R,Gg,GRg,n,nφ(Gg)), public verification key pair,
V = (V1,V2), message, m, and, signature pair, S = (S1,S2).

Output: Accept or reject
1: Compute the hash value of the message to be verified, h = H(m).
2: Compute GS1r = gcd(S1,GRg).
3: Compute αF ≡V1 (mod GRg).
4: Compute w0 ≡ GS1r(V

S1
1 +h)S−1

1 (mod GRgq2).
5: Compute w1 = w0 −S2.
6: if w1 = 0 then
7: Reject signature ⊥
8: else Continue step 10
9: end if

10: Compute w2 ≡ GS1r(α
S1
F +h)S−1

1 (mod GRgq2).
11: Compute w3 = w2 −S2.
12: if w3 = 0 then
13: Reject signature ⊥
14: else Continue step 16
15: end if
16: Compute w4 ≡ S1S2 −GS1rh (mod q)
17: Compute w5 ≡ GS1rV

S1
1 (mod q)

18: Compute w6 = w4 −w5
19: if w6 ̸= 0 then
20: Reject signature ⊥
21: else Continue step 23
22: end if
23: Compute w7 = 2S−1

1 (mod
(

φ(q2)
2

)
).

24: Compute w80 ≡
(
(S1S2 −GS1rh)(GS1r)

−1)2w7 (mod q2) and w8 = H(w80).
25: Compute w9 = w8 −V2.
26: if w9 ̸= 0 then
27: Reject signature ⊥
28: else Continue step 30
29: end if
30: Compute z0 ≡ RS1S2 (mod Gg).
31: Compute y1 ≡ gz0 (mod N).

32: Compute z1 ≡ RGS1r(V
S1
1 +h) (mod GRg) (mod Gg).

33: Compute y2 ≡ gz1 (mod N).
34: if y1 = y2 then
35: accept signature
36: else reject signature ⊥
37: end if
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Steps 4, 5, 6, 7, 8, and 9 during verification are known as the KAZ-SIGN digital signature
forgery detection procedure type – 1, steps 10, 11, 12, 13, 14 and 15 during verification
are known as the KAZ-SIGN digital signature forgery detection procedure type – 2,
steps 16, 17, 18, 19, 20, 21, and 22 during verification are known as the KAZ-SIGN
digital signature forgery detection procedure type – 3, and steps 23, 24, 25, 26, 27, 28,
and 29 are known as the KAZ-SIGN digital signature forgery detection procedure type
– 4.

8. THE DESIGN RATIONALE

8.1 Proof of correctness (Verification steps 30, 31, 32, 33, 34, 35, 36 and 37)

We begin by discussing the rationale behind steps 30, 31, 32, 33, 34, 35, 36 and 37 with re-
lation to the verification process. Observe the following,

gz0 ≡ gRS1S2 ≡ gRrGS1r(α
S1+h)(r)−1

≡ gRGS1r(V
S1
1 +h)

≡ gz1 (mod N).

because α ≡V1 (mod GRg). As such the verification process does indeed provide an indi-
cation that the signature is indeed from an authorized sender with the private signing key
α .

8.2 Proof of correctness (Verification steps 4, 5, 6, 7, 8, and 9: KAZ-SIGN digital
signature forgery detection procedure type – 1)

In order to comprehend the rationale behind steps 4, 5, 6, 7, 8, and 9, one has to observe
the following,

w0 ≡ GS1r(V
S1
1 +h)S−1

1 ̸≡ GS1r(α
S1 +h)S−1

1 (mod GRgq2)

because α ̸≡V1 (mod GRgq2). Hence, w1 ̸= 0.

8.3 Proof of correctness (Verification steps 10, 11, 12, 13, 14 and 15: KAZ-SIGN
digital signature forgery detection procedure type – 2)

In order to comprehend the rationale behind steps 10, 11, 12, 13, 14 and 15, one has to
observe the following;

w2 ≡ GS1r(α
S1
F +h)S−1

1 ̸≡ GS1r(α
S1 +h)S−1

1 (mod GRgq2).

because α ̸≡ αF (mod GRgq2) where αF ≡V1 (mod GRg). Hence, w3 ̸= 0.
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8.4 Proof of correctness (Verification steps 16, 17, 18, 19, 20, 21, and 22: KAZ-SIGN
digital signature forgery detection procedure type – 3)

In order to comprehend the rationale behind steps 16, 17, 18, 19, 20, 21, and 22, one has to
observe

S1S2 −GS1rh ≡ GS1rV
S1
1 (mod q)

because α ≡V1 (mod q). Hence, w6 = 0.

8.5 Proof of correctness (Verification steps 23, 24, 25, 26, 27, 28, and 29 : KAZ-SIGN
digital signature forgery detection procedure type – 4)

In order to comprehend the rationale behind steps 23, 24, 25, 26, 27, 28, and 29, one has to
observe

w80 ≡
(
(S1S2 −GS1rh)(GS1r)

−1)2w7 ≡ (αS1)2w7 ≡ α
4 (mod q2).

By computing w8 = H(w80), we finally have w9 = 0.

8.6 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 1 and KAZ-SIGN digital signature forgery detection
procedure type – 2.

An adversary utilizing a random r0 computes the corresponding parameter pair given by
(S1 (mod GRgq2),GS1r). Next, the adversary could compute either one of the following:

1. S2 ≡ GS1r(V
S1
1 +h)S−1

1 (mod GRgq2); or

2. S2 ≡ GS1r(α
S1
F +h)S−1

1 (mod GRgq2)

Since α ≡V1 ≡ αF (mod GRg), the forged signature pair will pass steps 30, 31, 32, 33, 34,
35, 36 and 37. However, the signature pair will fail KAZ-SIGN digital signature forgery
detection procedure type – 1 or KAZ-SIGN digital signature forgery detection procedure
type – 2.

8.7 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 3

An adversary utilizing a random r0 computes the corresponding parameter pair given by
(S1 (mod GRgq2),GS1r). Next, with a random x ∈ ZGRgq2 and random unknown prime
ρ ≈ q, the adversary could compute either one of the following:

i) S2 ≡ GS1r(V
S1
1 +h+GRgx)S−1

1 (mod GRgq2); or

7 KAZ-SIGN v1.3



ii) S2 ≡ GS1r(V
S1
1 +h+GRgx)S−1

1 (mod GRgρq); or

iii) S2 ≡ GS1r(α
S1
F +h+GRgx)S−1

1 (mod GRgq2); or

iv) S2 ≡ GS1r(α
S1
F +h+GRgx)S−1

1 (mod GRgρq).

The forged signature pair will not be able to be detected by either the KAZ-SIGN digi-
tal signature forgery detection procedure type – 1 or KAZ-SIGN digital signature forgery
detection procedure type – 2. It will also pass steps 30, 31, 32, 33, 34, 35, 36 and 37. How-
ever, the signature pair will fail KAZ-SIGN digital signature forgery detection procedure
type – 3. This is because, one would obtain either:

i) S1S2 −GS1rh ≡ GS1r(V
S1
1 +GRgx) ̸≡ GS1rV

S1
1 (mod q); or

ii) S1S2 −GS1rh ≡ GS1r(α
S1
F +GRgx) ̸≡ GS1rV

S1
1 (mod q).

As a note, the corresponding parameter S1 could also be modulo GRgρq. Nevertheless, the
above output will remain.

An alternative for the adversary would be to derive the corresponding S1 modulo GRgq2 by
solving the following relation:

S1S2 −GS1rh ≡ GS1rV
S1
1 (mod GRgq2) (1)

However, to solve equation (1), the complexity is is O(q). When deploying Grover’s al-
gorithm on a quantum computer, the complexity will be O(q0.5). Furthermore q is a k-bit
prime number (where k is either 128 or 192 or 256 bits). The adversary will not be able to
execute the Chinese Remainder Theorem to reduce this complexity.

8.8 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 4

An adversary utilizing a random r0 and random unknown prime ρ ≈ q computes the corre-
sponding parameter pair (S1 (mod GRgρq),GS1r). Next, the adversary could compute the
following:

S2 ≡ GS1r(V
S1
1 +h)S−1

1 (mod GRgρq)

The forged signature pair will not be able to be detected by either the KAZ-SIGN digital
signature forgery detection procedure type – 1 or KAZ-SIGN digital signature forgery de-
tection procedure type – 2 or KAZ-SIGN digital signature forgery detection procedure type
– 3. It will also pass steps 30, 31, 32, 33, 34, 35, 36 and 37. However, the signature pair
will fail KAZ-SIGN digital signature forgery detection procedure type – 4. This is because
of the different groups ZGRgρq and ZGRgq2 .
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Note that, by replacing V1 with αF for the above forgery strategy in this section, the forged
signature will not pass KAZ-SIGN digital signature forgery detection procedure type – 3.
This is because αF ̸≡V1 (mod q).

8.9 Extracting α (mod GRgq2) from S2.

Observe that,
z1 ≡ S1S2 −GS1rh ≡ GS1rα

S1 (mod GRgq2).

Since GRg ≡ 0 (mod GS1r), we can have

z2 ≡ z1GS−1
1r ≡ α

S1 (mod GRg2q2) (2)

where GRg2 =GRgGS−1
1r . However, gcd(S1,φ(GRg2q2)) ̸= 1. Suppose z3 = gcd(S1,φ(GRg2q2)).

One can then proceed to compute z4 ≡ z3S−1
1 (mod φ(GRg2q2)). As a result, one can ob-

tain:

zz4
2 ≡ α

z3 (mod GRg2q2) (3)

Thus, for both cases (2) and (3), the complexity to obtain α modulo GRg2q2 is O(GRg2q2).

8.10 Extracting α via KAZ-SIGN digital signature forgery detection procedure type
– 4

Through the KAZ-SIGN digital signature forgery detection procedure type – 4, the adver-
sary can proceed to obtain the value w81 ≡ α (mod q2) from the extracted value w80 ≡ α4

(mod q2) from a valid signature.

Then, the challenge faced the adversary is to retrieve α from w81 ≡ α (mod q2). This is
the MRP. Since GRgq < q2, the complexity of solving the MRP via V1 is much higher than
the complexity of solving the MRP via α (mod q2).

As such, the complexity of solving the MRP via α (mod q2) will be the determining factor
in identifying the suitable key length for each security level.

8.11 Modular linear equation of S2.

In this direction we obtain rF ≡ S1 (mod GRg).

From the above, observe that one can analyze S2 as follows,

S2 ≡ GS1r(α
S1 +h)r−1 ≡ GS1r(V

S1
1 +h)r−1

F (mod GRg)

9 KAZ-SIGN v1.3



Since GRg ≡ 0 (mod GS1r), it implies

(αS1 +h)r−1 ≡ (V S1
1 +h)r−1

F (mod GRg2)

where GRg2 = GRgGS−1
1r . Moving forward we have,

rFα
S1 − (V S1

1 +h)r+hrF ≡ 0 (mod GRg2) (4)

Let α̂ be the upper bound for αS1 and r̂ be the upper bound for r. From Conjecture 1, if
one has the situation where α̂ r̂ ≫ GRg2, then there is no efficient algorithm to output all
the roots of (4). That is, (4) usually has GRg2 many solutions, which is exponential in the
bit-size of GRg2.

To this end, since αS1 is exponentially large, it is clear to conclude that α̂ r̂ ≫ GRg2. This
implies, there is no efficient algorithm to output all the roots of (4).

8.12 Implementation of the Hidden Number Problem

From S2 to obtain α or r, is the hidden number problem.

8.13 Another “Expensive” Problem Related To KAZ-SIGN: The Second Order Dis-
crete Logarithm Problem (2-DLP)

Let N be a composite number, g a random prime in ZN of order Gg where at most Gg ≈ Nδ

for δ ∈ (0,1) and δ → 0. That is, gGg ≡ 1 (mod N). Choose a random prime Q ∈ Zφ(N)

of order GQ, where GQ ≈ φ(N)ε for ε → 1. That is, choose Q with a large order in Zφ(N).
Such Q, has it own natural order in Zφ(Gg). Let that order be denoted as GQg. We can
observe the natural relation given by QGQg ≡ 1 (mod Gg) and φ(N)≡ 0 (mod Gg).

Then choose a random integer x ∈ Zφ(Gg) where x ≈ φ(Gg). Suppose from the relation
given by

gQx (mod φ(N)) ≡ A (mod N) (5)

one has solved the Discrete Logarithm Problem (DLP) upon equation (5) in polynomial
time on a classical computer and obtained the value X where Qx ̸≡ X (mod φ(N)) and
gX ≡ A (mod N), The relation Qx ̸≡ X (mod φ(N)) would result in the non-existence of
the discrete logarithm solution for Qx ≡ X (mod φ(N)).

The 2-DLP is, upon given the values (A,g,N,Q), one is tasked to determine x ∈ Zφ(Gg)

where x ≈ φ(Gg) such that equation (5) holds.

Let Qx ≡ T1 (mod φ(N). From the predetermined order of g ∈ ZN , during the process of
solving the DLP upon equation (5), a collision would occur prior to the full cycle of g. As

10 KAZ-SIGN v1.3



such, the process of solving the DLP upon equation (5) to obtain X ≈ Nδ would occur in
polynomial time on a classical computer. And since T1 < φ(N) and T1 ≈ N1, the relation
Qx ̸≡ X (mod φ(N)) will hold.

Furthering on the discussion, one has the relation gGg ≡ 1 (mod N). As such, from the
value X < Gg obtained from equation (5), one can construct the set of solutions given by
T0 = X +Ggt for t = 0,1,2,3, . . .. Now let Qx ≡ T1 (mod φ(N)). Following through,since
T1 is an element from the set of solutions, one can have the relation

tT1 =
T1 −X

Gg

Since Gg,X ≈ Nδ , and φ(N)≈ N, the complexity to obtain tT1 is O(N1−δ ). When deploy-
ing Grover’s algorithm on a quantum computer, the complexity to obtain tT1 is O(N

1−δ

2 ).

To this end, note that if one proceeds to solve the DLP upon Qx ≡ X (mod Gg), one can
obtain the value x0 ≡ x (mod GQg). From the preceding sections, this is in fact the MRP.
It is easy to see that with correct choice of parameters (x,GQg), the complexity of 2-DLP
and MRP can be made the same. Hence, a more “non-expensive” method in discussing the
needs of the KAZ-SIGN is directly via the MRP.

9. KEY GENERATION, SIGNING AND VERIFICATION TIME COMPLEXITY

It is obvious that the time complexity for all three procedures is in polynomial time.

10. SPECIFICATION OF KAZ-SIGN

The following is the security specification for δ = 0.23.

Number of primes in P n = ℓ(N) Total security level, k
195 1662 128
290 2667 192
390 3783 256

Table 1

11. IMPLEMENTATION AND PERFORMANCE

11.1 Key Generation, Signing and Verification Time Complexity

It is obvious that the time complexity for all three procedures is in polynomial time.
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11.2 Parameter sizes

We provide here information on size of the key and signature based on security level infor-
mation from Table 1 (for δ = 0.23) where ℓ(V2) is the length of an output generated by a
256-bit hash function.

NIST
Security

Level

Number of
primes

in P

Security
level,

k

Length of
parameter
N (bits)

Public
key size,

(V1,V2) (bits)

Private
key size,
α (bits)

Signature Size
(S1,S2)
(bits)

ECC key
size

(bits)

1 195 128 1662
≈ 218+256

= 474 ≈ 384 ≈ 700 256

3 290 192 2667
≈ 332+256

= 588 ≈ 576 ≈ 1046 384

5 390 256 3783
≈ 450+256

= 706 ≈ 768 ≈ 1409 521

Table 2

In the direction of the research, we also make comparison to ECC key length for the three
NIST security levels. KAZ-SIGN key length did not achieve its immediate target of having
approximately the same key length as ECC, but further research might find means and
ways.

11.3 Key Generation, Signing and Verification Ease of Implementation

The algebraic structure of KAZ-SIGN has an abundance of programming libraries available
to be utilized. Among them are:

1. GNU Multiple Precision Arithmetic Library (GMP); and

2. Standard C libraries.

11.4 Key Generation, Signing and Verification Empirical Performance Data

In order to obtain benchmarks, we evaluate our reference implementation on a machine us-
ing GCC Compiler Version 6.3.0 (MinGW.org GCC-6.3.0-1) on Windows 10 Pro, Intel(R)
Core(TM) i7-4710HQ CPU @ 2.50GHz and 8.00 GB RAM (64-bit operating system, x64-
based processor).

We have the following empirical results when conducting 100 key generations, 100 sign-
ings and 100 verifications:
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Time (ms)
Security level

Key generation Signing Verification
128 - KAZ1662 108 384 161
192 - KAZ2667 117 426 375
256 - KAZ3783 123 513 1186

Table 3

12. ADVANTAGES AND LIMITATIONS

As we have seen, KAZ-SIGN can be evaluated through:

1. Key length

2. Speed

3. No verification failure

12.1 Key Length

KAZ-SIGN key length is comparable to non-post quantum algorithms such as ECC and
RSA. For 256-bit security, the KAZ-SIGN key size is 706-bits. ECC would use 521-bit
keys and RSA would use 15360-bit keys.

12.2 Speed

KAZ-SIGN’s speed analysis results stem from the fact that it has short key length to achieve
256-bit security plus its textbook complexity running time for both signing and verifying
is O(n3) where parameter n here is the input length.

12.3 No verification failure

It is apparent that the execution of KAZ-SIGN parameter suitability detection proce-
dure together with KAZ-SIGN digital signature forgery detection procedure type – 1,
type – 2, type – 3, and type – 4 within the verification procedure will enable the verifica-
tion computational process by the recipient to verify or reject a digital signature that was
received by the recipient with probability equal to 1. That is, the probability of verification
failure is 0.

12.4 Limitation

As we have seen, limitation of KAZ-SIGN can be evaluated through:

1. Based on unknown problem, the Modular Reduction Problem (MRP)
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12.4.1 Based on unknown problem, the Modular Reduction Problem (MRP)

The MRP is not a known hard mathematical problem which is quantum resistant and is sub-
ject to future cryptanalysis success in solving the defined challenge either with a classical
or quantum computer.

13. CLOSING REMARKS

The KAZ-SIGN digital signature exhibits properties that might result in it being a desirable
post quantum signature scheme. In the event that new forgery methodologies are found, as
long as the procedure can also be done by the verifier, then one can add the new forgery
methodology into the verification procedure. At the same time, the same forgery methodol-
ogy can be inserted into the signing procedure in order to eliminate any chances the signer
will produce a signature that will be rejected.

To this end, the security of the MRP is an unknown fact. We opine that, the acceptance of
MRP as a potential quantum resistant hard mathematical problem will come hand in hand
with a secure cryptosystem designed upon it. We welcome all comments on the KAZ-
SIGN digital signature, either findings that nullify its suitability as a post quantum digital
signature scheme or findings that could enhance its deployment and use case in the future.

Finally, we would like to put forward our heartfelt thanks to Prof. Dr. Abderrahmane
Nitaj from Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Basse Nor-
mandie, France for insights, comments, and friendship throughout the process.
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14. ILLUSTRATIVE FULL SIZE TEST VECTORS – 1

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 195. That is, P = {3,5,7, . . . ,1193}. In this illustration,
we provide a valid KAZ-SIGN signature pair S = (S1,S2). The valid KAZ-SIGN signature
will pass all 4 KAZ-SIGN digital signature forgery detection procedure types.

N :
11407459538923317956992856472478034719938444515550504873191432724561240
77590743470594911066332509539066597551699013776050581430643550167887346
08191843438244914234171652904624354475977819424112770780591839969259477
16504087172783276497191148945981028252785414086386424445171843610035797
71215355642643202854238405781778429260537407631182034795543825674983533
93399124947777143263677777878879658242357818636034216510614700942625283
16073897973467968535780096264794534714067794192763112712608847144283240

4185 ≈ 21662

g :
6007

Gg :
17720681536509435215163237615189945478576380515988874530058447706012782

9364641006743420972687893421171393095806176000 ≈ 2387 ≈ 20.232(1662) ≈ N0.232

R :
6151

GRg :

35678531314800710220296412000 ≈ 295 ≈ N0.057

q :
186271066291365175235134559775362979779
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Key generation

α :
11964867514980067650774508810111642542837421269018971276195043368001398

053628895213555348447914429992175418785963269 ≈ 2383

V1 :
2094185182448701905319928164821044095341949158961290587886894107269

tαV1 =
α −V1

GRgq
:

1800344120951868743001728342526473219585390642772 ≈ 2161

α
4 (mod q2) :

26721684139801322158744583724058159223661276209601335607508278277060375
923046

V2 = H(α4 (mod q2)) :
ba391875ff50ea9e738a5cc0159b1339bb8fa0e2f270ef378e5c5240fcbc4732

Signing

h :
91006428741413731366545013796589762083117485245176969439757414581541878
614238

r :
11852872864618669943307681500851434918655305636626150761125102078864646
453785686170705530026156010487481457458656560

S1 :
383280853942879221199791598440756269797113868564031038689232946075
485855619571589870248043417102016752560
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S2 :
89837627981822264974965541671265216682677898875863795258204977317135170
8655925733391607667230757292074179

GS1 and GS1r :
2160

Verification

KAZ-SIGN digital signature forgery detection procedure type – 1

w0 :
76167960715333521439175324070500683496345989126448216762302629135954974
5006546876886604796156804399106779

w1 = w0 −S2 :
−1366966726648874353579021760076453318633190974941557849590234818118019
63649378856505002871073952892967400

KAZ-SIGN digital signature forgery detection procedure type – 2

w2 :
896521076337686999332735353368153838617423165326855510413694787982572568
814970755009584582939499182134779

w3 = w2 −S2 :
−1855203480535650416920063344498328209355823431782442168354985188779139
840954978382023084291258109939400
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KAZ-SIGN digital signature forgery detection procedure type – 3

w4 :
57336069090460161702150769343223740998

w5 :
57336069090460161702150769343223740998

w6 = w4 −w5 :
0

KAZ-SIGN digital signature forgery detection procedure type – 4

w7 :
1590281275589685874846763137233424549967118327810933629745453682578197517
9315

w80 :
2672168413980132215874458372405815922366127620960133560750827827706037592
3046

H(w80) :
ba391875ff50ea9e738a5cc0159b1339bb8fa0e2f270ef378e5c5240fcbc4732

w9 = H(w80)−V2 :
0

MRP complexity upon w81 = α (mod q2)

w81 = α (mod q2) :
2569344103747874058684908223729786629800855093160215735786452403680426903
8715

tαw81 =
α −w81

q2 :

344839568354241152569342511565821233594 ≈ 2129
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Final verification

y1 and y2 :
9678733104992034888628894584286731645027347443872038782768171489732529388
0048877490496307118868165050375032594242014959669840046107246260536803183
4888203384559829798330927698615360241642588019411254504903877747159053146
6701871613002290052643640816468457435808334759136405882613474759745455101
1451522048434905036144454872522946456115748221581710227263448217652008147
5714830034648821466616203937051374293791936095743419505390553360154708920
60746760512011109369326662461764018069641813629469515808984342
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15. ILLUSTRATIVE FULL SIZE TEST VECTORS – 2

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 195. That is, P = {3,5,7, . . . ,1193}. In this illustration,
we provide a forged KAZ-SIGN signature pair S = (S1,S2) where the system parame-
ters, (N,g,Gg,R,GRg,α,V1,V2,h,r,S1) are the same as in ILLUSTRATIVE FULL SIZE
TEST VECTORS – 1 and S2 ≡ G1r(V

S1
1 + h)S−1

1 (mod GRgq2). This signature pair will
fail the KAZ-SIGN digital signature forgery detection procedure type - 1.

S2 :
76167960715333521439175324070500683496345989126448216762302629135954974
5006546876886604796156804399106779

GS1 and GS1r :
2160

KAZ-SIGN digital signature forgery detection procedure type – 1

w0 :
76167960715333521439175324070500683496345989126448216762302629135954974
5006546876886604796156804399106779

w1 :
0

Final verification

y1 and y2 :
96787331049920348886288945842867316450273474438720387827681714897325293
88004887749049630711886816505037503259424201495966984004610724626053680
31834888203384559829798330927698615360241642588019411254504903877747159
05314667018716130022900526436408164684574358083347591364058826134747597
45455101145152204843490503614445487252294645611574822158171022726344821
76520081475714830034648821466616203937051374293791936095743419505390553
36015470892060746760512011109369326662461764018069641813629469515808984
342
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16. ILLUSTRATIVE FULL SIZE TEST VECTORS – 3

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 195. That is, P = {3,5,7, . . . ,1193}. In this illustration,
we provide a forged KAZ-SIGN signature pair S = (S1,S2) where the system parame-
ters, (N,g,Gg,R,GRg,α,V1,V2,h,r,S1) are the same as in ILLUSTRATIVE FULL SIZE
TEST VECTORS – 1 and S2 ≡ G1r(α

S1
F + h)S−1

1 (mod GRgq2). This signature pair will
fail the KAZ-SIGN digital signature forgery detection procedure type – 2.

αF :
25765466249370643715119715269

S2 :
89652107633768699933273535336815383861742316532685551041369478798257256
8814970755009584582939499182134779

GS1 and GS1r :
2160

KAZ-SIGN digital signature forgery detection procedure type – 2

w2 :
89652107633768699933273535336815383861742316532685551041369478798257256
8814970755009584582939499182134779

w3 :
0

Final verification

y1 and y2 :
96787331049920348886288945842867316450273474438720387827681714897325293
88004887749049630711886816505037503259424201495966984004610724626053680
31834888203384559829798330927698615360241642588019411254504903877747159
05314667018716130022900526436408164684574358083347591364058826134747597
45455101145152204843490503614445487252294645611574822158171022726344821
76520081475714830034648821466616203937051374293791936095743419505390553
36015470892060746760512011109369326662461764018069641813629469515808984
342
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17. ILLUSTRATIVE FULL SIZE TEST VECTORS – 4

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 195. That is, P = {3,5,7, . . . ,1193}. In this illustration,
we provide a forged KAZ-SIGN signature pair S = (S1,S2) where the system parame-
ters, (N,g,Gg,R,GRg,α,V1,V2,h,r,S1) are the same as in ILLUSTRATIVE FULL SIZE
TEST VECTORS – 1 and S2 ≡ G1r(V

S1
1 + h+GRgx)S−1

1 (mod GRgq2). This signature
pair will pass the KAZ-SIGN digital signature forgery detection procedure type – 1 and
type – 2. However, this signature pair will fail the KAZ-SIGN digital signature forgery
detection procedure type – 3.

x :
10618684067963136096872551407440065459774895754182940862141292049797260
8607722

S2 :
36221688592028277861806102659303141259702767567329838129865594939084446
2855369907554895079354779305146779

GS1 and GS1r :
2160

KAZ-SIGN digital signature forgery detection procedure type – 3

w4 :
24066027619102262377401085416454550544

w5 :
57336069090460161702150769343223740998

w6 :
−33270041471357899324749683926769190454
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Final verification

y1 and y2 :
96787331049920348886288945842867316450273474438720387827681714897325293
88004887749049630711886816505037503259424201495966984004610724626053680
31834888203384559829798330927698615360241642588019411254504903877747159
05314667018716130022900526436408164684574358083347591364058826134747597
45455101145152204843490503614445487252294645611574822158171022726344821
76520081475714830034648821466616203937051374293791936095743419505390553
36015470892060746760512011109369326662461764018069641813629469515808984
342
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18. ILLUSTRATIVE FULL SIZE TEST VECTORS – 5

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 195. That is, P = {3,5,7, . . . ,1193}. In this illustration,
we provide a forged KAZ-SIGN signature pair S = (S1,S2) where the system parame-
ters, (N,g,Gg,R,GRg,α,V1,V2,h,r,S1) are the same as in ILLUSTRATIVE FULL SIZE
TEST VECTORS – 1 and S2 ≡ G1r(α

S1
F + h+GRgx)S−1

1 (mod GRgq2). This signature
pair will pass the KAZ-SIGN digital signature forgery detection procedure type – 1 and
type – 2. However, this signature pair will fail the KAZ-SIGN digital signature forgery
detection procedure type – 3.

αF :
25765466249370643715119715269

x :
10292570878411527362985895757184114510600700155840767275769719533899661
0287616

S2 :
25926009443463365313589620010673337933679600055940946817131870184278638
4071104964657529549011435148658779

GS1 and GS1r :
2160

KAZ-SIGN digital signature forgery detection procedure type – 3

w4 :
165142597253735214432446640655721095637

w5 :
57336069090460161702150769343223740998

w6 :
107806528163275052730295871312497354639
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Final verification

y1 and y2 :
96787331049920348886288945842867316450273474438720387827681714897325293
88004887749049630711886816505037503259424201495966984004610724626053680
31834888203384559829798330927698615360241642588019411254504903877747159
05314667018716130022900526436408164684574358083347591364058826134747597
45455101145152204843490503614445487252294645611574822158171022726344821
76520081475714830034648821466616203937051374293791936095743419505390553
36015470892060746760512011109369326662461764018069641813629469515808984
342
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19. ILLUSTRATIVE FULL SIZE TEST VECTORS – 6

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 195. That is, P = {3,5,7, . . . ,1193}. In this illustration,
we provide a forged KAZ-SIGN signature pair S = (S1,S2) where the system parameters,
(N,g,Gg,R,GRg,α,V1,V2,h,r) are the same as in ILLUSTRATIVE FULL SIZE TEST
VECTORS – 1 and S1 ≡ r (mod GRgρq) and S2 ≡GS1r(V

S1
1 +h)S−1

1 (mod GRgρq). This
signature pair will pass the KAZ-SIGN digital signature forgery detection procedure
type – 1, type – 2 and type – 3. However, this signature pair will fail the KAZ-SIGN
digital signature forgery detection procedure type – 4.

ρ :
25765466249370643715119715269

S1 :
38328085394287922119979159004128098235898447712885717733355141843099320
0749081263440819513815277107120560

S2 :
29719339281599439145650707365536734023799072194611705382204228269452658
7374481428942985139430129546259579

GS1 and GS1r :
2160

KAZ-SIGN digital signature forgery detection procedure type – 4

w7 :
12055485020885182345868886859695725401374311440640181188606350691281905
997689

w80 :
32547142287675725316375416153708109141324660055984491776946220327241251

H(w80) :
deccb2c9009a8b043d2f0e6adaa9b1343eb6e87865338d8536a01da9a84939f1

w9 = H(w80)−V2 ̸= 0
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Final verification

y1 and y2 :
96787331049920348886288945842867316450273474438720387827681714897325293
88004887749049630711886816505037503259424201495966984004610724626053680
31834888203384559829798330927698615360241642588019411254504903877747159
05314667018716130022900526436408164684574358083347591364058826134747597
45455101145152204843490503614445487252294645611574822158171022726344821
76520081475714830034648821466616203937051374293791936095743419505390553
36015470892060746760512011109369326662461764018069641813629469515808984
342
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