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1. INTRODUCTION

The proposed KAZ Digital Signature scheme, KAZ-SIGN (in Malay Kriptografi Atasi
Zarah - translated literally “cryptographic techniques overcoming particles”; particles here
referring to the photons) is built upon the hard mathematical problem coined as the Mod-
ular Reduction Problem (MRP). The idea revolves around the difficulty of reconstructing
an unknown parameter from a given modular reducted value of that parameter. The target
of the KAZ-SIGN design is to be a quantum resistant digital signature candidate with short
verification keys and signatures, verifying correctly approximately 100% of the time, based
on simple mathematics, having fast execution time and a potential candidate for seamless
drop-in replacement in current cryptographic software and hardware ecosystems.

2. THE DESIGN IDEALISME

(i) To be based upon a problem that could be proven analytically to require exponential
time to be solved;

(ii) To be able to prove analytically that the cryptosystem is indeed resistant towards
quantum computers;

(iii) To utilize problems mentioned in point (i) above in its full spectrum without having
to induce “weaknesses” in order for a trapdoor to be constructed;

(iv) To use “simple” mathematics in order to achieve maximum simplicity in design,
such that even practitioners with limited mathematical background will be able to
understand the arithmetic;

(v) Achieve 128 and 256-bit security with key length roughly equivalent to the non-
quantum secure Elliptic Curve Cryptosystem (ECC);

(vi) To achieve maximum speed upon having simplicity in design and short key length;

(vii) To have a sufficiently large signature space;

(viii) The computation overhead for both signing and verification increases slightly even if
the key size increases in the future;

(ix) To be able to be mounted on hardware with ease;

(x) The plaintext to signature expansion ratio is kept to a minimum.

One of our key strategy to obtain items (i) - (v) was by utilizing our defined Modular
Reduction Problem (MRP). It is defined in the following section.
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3. MODULAR REDUCTION PROBLEM (MRP)

Let N = ∏
j
i=1 pi be a composite number and n = ℓ(N). Let pk be a factor of N. Choose

α ∈ (2n−1,N). Compute A ≡ α (mod pk).

The MRP is, upon given the values (A,N, pk), one is tasked to determine α ∈ (2n−1,N).

4. COMPLEXITY OF SOLVING THE MRP

Let npk = ℓ(pk) be the bit length of pk. The complexity to obtain α is O(2n−npk ). When de-

ploying Grover’s algorithm on a quantum computer, the complexity to obtain α is O(2
n−npk

2 ).
In other words, if pk ≈ Nδ , for some δ ∈ (0,1), the complexity to obtain α is O(N1−δ ).
When deploying Grover’s algorithm on a quantum computer, the complexity to obtain α is
O(N

1−δ

2 ).

5. THE HIDDEN NUMBER PROBLEM (HNP) (Boneh and Venkatesan, 2001)

Fix p and u. Let Oα,g(x) be an oracle that upon input x computes the most u significant
bits of αgx (mod p). The task is to compute the hidden number α (mod p) in expected
polynomial time when one is given access to the oracle Oα,g(x). Clearly, one wishes to
solve the problem with as small u as possible. Boneh and Venkatesan (2001) demonstrated
that a bounded number of most significant bits of a shared secret are as hard to compute as
the entire secret itself.

The initial idea of introducing the HNP is to show that finding the u most significant bits of
the shared key in the Diffie-Hellman key exchange using users public key is equivalent to
computing the entire shared secret key itself.

6. THE HERMANN MAY REMARKS (Herrmann and May, 2008)

We will now observe two remarks by Herrmann and May. It discusses the ability and
inability to retrieve variables from a given modular multivariate linear equation. But before
that we will put forward a famous theorem of Minkowski that relates the length of the
shortest vector in a lattice to the determinant (see Hoffstein et al. (2008)).

Theorem 1. In an ω-dimensional lattice, there exists a non-zero vector v with

∥v∥ ≤
√

ω det(L)
1
ω

In lattices with fixed dimension we can efficiently find a shortest vector, but for arbitrary
dimensions, the problem of computing a shortest vector is known to be NP-hard under ran-
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domized reductions (see Ajtai (1998)). The LLL algorithm, however, computes in polyno-
mial time an approximation of the shortest vector, which is sufficient for many applications.

Remark 1. Let f (x1,x2, . . . ,xk) = a1x1 + a2x2 + . . .+ akxk be a linear polynomial. One
can hope to solve the modular linear equation f (x1,x2, . . . ,xk)≡ 0 (mod N), that is to be
able to find the set of solutions (y1,y2, . . . ,yk) ∈ Zk

N , when the product of the unknowns are
smaller than the modulus. More precisely, let Xi be upper bounds such that |yi| ≤ Xi for
1, . . . ,k. Then one can roughly expect a unique solution whenever the condition ∏i Xi ≤ N
holds (see Herrmann and May (2008)). It is common knowledge that under the same
condition ∏i Xi ≤ N the unique solution (y1,y2, . . . ,yk) can heuristically be recovered by
computing the shortest vector in an k-dimensional lattice by the LLL algorithm. In fact,
this approach lies at the heart of many cryptographic results (see Bleichenbacher and May
(2006); Girault et al. (1990) and Nguyen (2004)).

We would like to provide the reader with the conjecture and remark given in Herrmann and
May (2008).

Conjecture 1. If in turn we have ∏i Xi ≥ N1+ε then the linear equation f (x1,x2, . . . ,xk) =

∑
k
i=1 aixi ≡ 0 (mod N) usually has Nε many solutions, which is exponential in the bit-size

of N.

Remark 2. From Conjecture 1, there is hardly a chance to find efficient algorithms that in
general improve on this bound, since one cannot even output all roots in polynomial time.

7. THE KAZ-SIGN DIGITAL SIGNATURE ALGORITHM

7.1 Background

This section discusses the construction of the KAZ-SIGN scheme. We provide information
regarding the key generation, signing and verification procedures. But first, we will put
forward functions that we will utilize and the system parameters for all users.

7.2 Utilized Functions

Let H(·) be a hash function. Let φ(·) be the usual Euler-totient function. Let ℓ(·) be the
function that outputs the bit length of a given input. Let CRT ([F,G], [P,Q]) be the Chinese
Remainder Theorem upon F modulo P and G modulo Q where P and Q are co-prime.

7.3 System Parameters

From the given security parameter k, determine parameter j. Next generate a list of the
first j-primes larger than 2, P = {pi} j

i=1. Let N = ∏
j
i=1 pi. As an example, if j = 43, N

is 256-bits. Let n = ℓ(N) be the bit length of N. Choose a random prime in g ∈ ZN of
order Gg where at most Gg ≈ Nδ for a chosen value of δ ∈ (0,1) and δ → 0. That is,
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gGg ≡ 1 (mod N). Choose a random prime R ∈ Zφ(N) of order GR, where GR ≈ φ(N)ε

for ε → 1. That is, choose R with a large order in Zφ(N). Let nGR = ℓ(GR) be the bit
length of GR. Such R, has its own natural order in Zφ(Gg). Let that order be denoted as
GRg. We can observe the natural relation given by RGRg ≡ 1 (mod Gg) where φ(N) ≡ 0
(mod Gg) and φ(Gg) ≡ 0 (mod GRg). Let nφ(Gg) = ℓ(φ(Gg)) be the bit length of φ(Gg)
and nφ(GRg) = ℓ(φ(GRg)) be the bit length of φ(GRg). Let q be a random k-bit prime. Let
Q = ∏

25
i=1 pi = 116431182179248680450031658440253681535. The system parameters

are (g,k,q,Q,N,R,Gg,GRg,n,nφ(Gg)).

7.4 KAZ-SIGN Algorithms

The full algorithms of KAZ-SIGN are shown in Algorithms 1, 2, and 3.

Algorithm 1 KAZ-SIGN Key Generation Algorithm

Input: System parameters (g,k,q,Q,N,R,Gg,GRg,n,nφ(Gg))
Output: Public verification key pair, (V1,V2), private signing key, α , and secret signing

key, SK
1: Choose random prime (a,α) and random ω1 ∈ (2nφ(Gg)−2,2nφ(Gg)−1).
2: Compute public verification key-1, V1 ≡ α (mod GRg).
3: Compute secret parameter b ≡ aφ(φ(GRg)) (mod ω1φ(GRg)).
4: Compute public verification key-2, V2 ≡ Q(αφ(Q)b) (mod qQ).
5: Compute secret signing key, SK ≡ αφ(Q)b (mod GRgqQ)
6: Output public verification keys, (V1,V2), keep signing key SK secret and destroy pa-

rameters (α,a,b,ω1).

Algorithm 2 KAZ-SIGN Signing Algorithm

Input: System parameters (g,k,q,Q,N,R,Gg,GRg,n,nφ(Gg)), private signing key, α , se-
cret signing key, SK and message to be signed, m ∈ ZN .

Output: Signature, S
1: Let m ∈ ZN be the message to be signed and let h = next prime(H(m)).
2: Choose random prime r, and random ω2 ∈ (2nφ(Gg)−2,2nφ(Gg)−1).
3: Compute secret parameter β ≡ rφ(φ(GRg)) (mod ω2φ(GRg)).
4: Compute S ≡ (SK)(h(φ(qQ)β )) (mod GRgqQ).
5: Output signature, S, and destroy (β ,r,ω2).
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Algorithm 3 KAZ-SIGN Verification Algorithm

Input: System parameters (g,k,q,Q,N,R,Gg,GRg,n,nφ(Gg)), public verification key pair,
(V1,V2), message, m, and signature, S.

Output: Accept or reject signature
1: Compute h = nextprime(H(m)).

2: Compute y ≡ (V φ(Q)
1 )(hφ(qQ)) (mod GRgQ) and SF1 =CRT ([V2

Q ,y], [q,GRgQ]).
3: Compute the following procedure: Set SF2 = 0. Set modulus = 1 and soln = 0.
4: V Q ≡ (V φ(Q)

1 )(hφ(qQ)) (mod GRg)
5: for each factor rei

i of GRgqQ do
6: set g1 = gcd(Q,rei

i )
7: set g2 = gcd(GRg,r

ei
i )

8: set g3 = gcd(qQ,rei
i )

9: if g1 ̸= 1 then soln = 1; end if
10: if g1 = 1 and g2 ̸= 1 and (g3 = 1 or Q (mod g3) = 0) then

soln =V Q (mod g2); end if
11: if g1 = 1 and g2 = 1 then soln =V2Q−1; end if
12: SF2 =CRT ([SF2,soln], (modulus,rei

i ))
13: modulus = modulus · rei

i
14: end for
15: Compute w0 ≡ (S (mod GRgqQ))−S.
16: if w0 ̸= 0 then
17: Reject signature ⊥
18: else Continue Step 20
19: end if
20: Compute w1 ≡ (S (mod GRgqQ))−SF1.
21: if w1 = 0 then
22: Reject signature ⊥
23: else Continue Step 25
24: end if
25: Compute w2 = (S (mod GRgqQ))−SF2
26: if w2 = 0 then
27: Reject signature ⊥
28: else Continue Step 30
29: end if
30: Compute w3 ≡ QS (mod qQ). Compute w4 = w3 −V2.
31: if w4 ̸= 0 then
32: Reject signature ⊥
33: else Continue Step 35
34: end if
35: Compute y1 ≡ g(R

S (mod Gg) (mod N).

36: Compute y2 ≡ g(R
((V φ(Q)

1 )(hφ(qQ)) (mod GRg)) (mod Gg)) (mod N).
37: if y1 = y2 then
38: accept signature
39: else reject signature ⊥
40: end if
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Steps 15, 16, 17, 18, and 19 during verification are known as the KAZ-SIGN digital
signature forgery detection procedure type – 1, steps 20, 21, 22, 23, and 24 during
verification are known as the KAZ-SIGN digital signature forgery detection procedure
type – 2, steps 25, 26, 27, 28, and 29 during verification are known as the KAZ-SIGN
digital signature forgery detection procedure type – 3 and steps 30, 31, 32, 33, and
34 during verification are known as the KAZ-SIGN digital signature forgery detection
procedure type – 4.

8. THE DESIGN RATIONALE

In this section we will analyse the rationale behind the design vis-à-vis a valid signature
parameter S.

8.1 Proof of correctness (Verification steps 35, 36, 37, 38, 39, and 40)

We begin by discussing the rationale behind steps 35, 36, 37, 38, 39, and 40 with relation to
the verification process. Observe the following,

g(R
S (mod Gg)) ≡ gR((α(φ(Q)b))(h(φ(qQ)β )) (mod GRg)) (mod Gg)

≡ gR((α(φ(Q)))(h(φ(qQ))) (mod GRg)) (mod Gg)

≡ g(R
((V φ(Q)

1 (hφ(qQ)) (mod GRg)) (mod Gg)) (mod N)

because α ≡ V1 (mod GRg), and b ≡ aφ(φ(GRg)) ≡ 1 (mod φ(GRg)) since ω1φ(GRg) ≡ 0
(mod GRg). As such the verification process does indeed provide an indication that the
signature is indeed from an authorized sender with the private signing key α .

8.2 Proof of correctness (Verification steps 15, 16, 17, 18, and 19: KAZ-SIGN digital
signature forgery detection procedure type – 1)

In order to comprehend the rationale behind steps 15, 16, 17, 18, and 19, one has to observe
the following,

w0 ≡ (S (mod GRgqQ))−S = 0

because S < GRgqQ.

8.3 Proof of correctness (Verification steps 20, 21, 22, 23, and 24: KAZ-SIGN digital
signature forgery detection procedure type – 2)

In order to comprehend the rationale behind steps 20, 21, 22, 23, and 24, one has to observe
the following; obviously SF1 is not constructed with secret parameters (α,b). As such from
w1 ≡ (S (mod GRgqQ))−SF1, we will have w1 ̸= 0.
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8.4 Proof of correctness (Verification steps 25, 26, 27, 28, and 29: KAZ-SIGN digital
signature forgery detection procedure type – 3)

In order to comprehend the rationale behind steps 25, 26, 27, 28, and 29, one has to observe
the following; obviously SF2 is not constructed with secret parameters (α,b). As such from
w2 ≡ (S (mod GRgqQ))−SF2, we will have w2 ̸= 0.

8.5 Proof of correctness (Verification steps 30, 31, 32, 33, and 34: KAZ-SIGN digital
signature forgery detection procedure type – 4)

In order to comprehend the rationale behind steps 30, 31, 32, 33, and 34, one has to observe
the following;

w3 ≡ QS ≡ Q(αφ(Q)b) (mod qQ)

Hence, w4 = w3 −V2 = 0.

8.6 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 1.

An adversary utilizing a valid signature, S and resends it as follows:

SF0 ≡ S+GRgqQx (mod θGRgqQ)

for some random value of x ∈ Z and small value of θ ∈ Z, such that ℓ(SF0)≈ ℓ(S). That is,
ℓ(SF0) is not suspicious to the verifier. It is easy to observe that SF0 will pass steps 35, 36,
37, 38, 39, and 40. However, since

w0 ≡ (SF0 (mod GRgqQ))−SF0 ̸= 0 ∈ Z

the signature will fail KAZ-SIGN digital signature forgery detection procedure type – 1.

8.7 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 2

An adversary that constructs a forged signature S as follows; compute y ≡ (V φ(Q)
1 )(hφ(qQ))

(mod GRgQ) and S =CRT ([V2
Q ,y], [q,GRgQ]), and then transmits it as a signature S would

result in
w1 ≡ (S (mod GRgqQ))−SF1 = 0.

It is easy to observe that S will pass steps 35, 36, 37, 38, 39, and 40. However, the signature
will fail KAZ-SIGN digital signature forgery detection procedure type - 2.
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8.8 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type - 3

An adversary that constructs a forged signature S as described in steps 3-14 within the
verification algorithm; and then transmits it as a signature S would result in

w2 ≡ S (mod GRgqQ)−SF2 = 0.

It is easy to observe that S will pass steps 35, 36, 37, 38, 39, and 40. However, the signature
will fail KAZ-SIGN digital signature forgery detection procedure type - 3.

8.8.1 Origins of KAZ-SIGN digital signature forgery detection procedure type - 3

The origins of KAZ-SIGN digital signature forgery detection procedure type - 3 is from
the following iterative CRT procedure.

1: Compute the following procedure: Set SF2 = 0. Set modulus = 1.
2: V Q ≡ (V φ(Q)

1 )(hφ(qQ)) (mod GRg)
3: for each factor rei

i of GRgqQ do
4: for soln = 0,1,2, . . . ,rei

i −1 do
5: if soln mod gcd(Q,rei

i ) ̸≡ 1 (mod gcd(Q,rei
i )) then next; end if

6: if soln mod gcd(GRg,r
ei
i )̸≡V Q mod gcd(GRg,r

ei
i ) then next; end if

7: if soln ·Q mod gcd(q ·Q,rei
i )̸≡V2 mod gcd(q ·Q,rei

i )then next; end if
8: break
9: end for

10: SF2 =CRT ([SF2,soln], (modulus,rei
i ))

11: modulus = modulus · rei
i

12: end for
For large q, the iterative CRT would not be feasible. Nevertheless, if the above iterative
CRT could be enhanced, it would produce SF2 that would pass all verification procedures.
KAZ-SIGN digital signature forgery detection procedure type - 3, is an enhanced imple-
mentation of the above iterative CRT procedure.

8.9 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 4

An adversary that constructs a forged signature S without the private key α and at the same
time aspires to pass steps 35, 36, 37, 38, 39, and 40 would result in the relation,

S ≡ (λ φ(Q)b) (mod qQ)

where λ = V1 +GRgt for some t ∈ Z. It is clear that α ̸≡ V1 +GRgt (mod qQ). As such,
w4 = w3 −V2 ̸= 0, where w3 ≡ Q(λ φ(Q)b) (mod qQ). Thus, the signature will fail KAZ-
SIGN digital signature forgery detection procedure type - 4.
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8.10 Extracting α

An approach to forge the signature would be to produce either one of the following:

1. yα1 ≡ α (mod GRgqQ) OR

2. yα2 ≡ αφ(Q) (mod GRgqQ).

8.10.1 Producing yα1 ≡ α (mod GRgqQ)

From the public parameter V1 ≡ α (mod GRg), the adversary needs to obtain the parameter
α (mod qQ) to execute the Chinese Remainder Theorem (CRT) to obtain α (mod GRgqQ).
To obtain α (mod qQ), the adversary will utilize equation S. Observe that

S ≡ (αφ(Q)b)(hφ(qQ)β )≡ α
φ(Q)b ̸≡ α (mod qQ)

Thus, this option is not viable.

8.10.2 Producing yα2 ≡ αφ(Q) (mod GRgqQ)

To obtain yα2, one begins with,

z1 ≡V φ(Q)
1 ≡ α

φ(Q) (mod GRg).

Then, one needs to produce the parameter αφ(Q) (mod qQ). However,

z2 ≡ S ≡ (α(φ(Q)b))(h(φ(qQ)β )) ̸≡ α
φ(Q) (mod qQ).

Thus, with the available parameters (S,V1), one is unable to produce yα2.

8.11 Modular linear equation of S

In this direction we analyze

S ≡ (α(φ(Q)b))(h(φ(qQ)β )) (mod GRgqQ)

Let

1. X1 ≡ αφ(Q)b (mod GRgqQ)

2. X2 ≡ hφ(qQ)β (mod GRgqQ)

9 KAZ-SIGN v1.6.1



Moving forward we have,

X1X2 −S ≡ 0 (mod GRgqQ) (1)

Let X̂1 be the upper bound for X1 and X̂2 be the upper bound for X2. From Conjecture 1, if
one has the situation where X̂1X̂2 ≫ GRgqQ, then there is no efficient algorithm to output
all the roots of (1). That is, (1) usually has GRgqQ many solutions, which is exponential in
the bit-size of GRgqQ.
To this end, since both αφ(Q)b and hφ(qQ)β are exponentially large, it is clear to conclude
that X̂1X̂2 ≫ GRgqQ. This implies, there is no efficient algorithm to output all the roots of
(1).

8.12 Implementation of the Hidden Number Problem (HNP)

From S, let us denote as follows:

1. x1 ≡ α(φ(Q)b) (mod GRgqQ)

2. x2 ≡ φ(qQ)β

Thus, S can be re-written as

S ≡ (x1)(hx2) (mod GRgqQ) (2)

for unknown pair (x1,x2). It is obvious that (2) is the HNP.

8.13 Analysis on V2

Assume we have V1 ≡ α (mod q). Let,

w1 ≡V φ(Q)
1 ≡ α

φ(Q) (mod q)

w2 ≡V2Q−1 ≡ α
φ(Q)b ≡V φ(Q)b

1 (mod q)

The aim is to obtain the system of equations

b ≡ ζ (mod φ(q)) (3)

b ≡ aφ(φ(GRg)) (mod φ(Gg)) (4)

for some arbitarily chosen prime a.

We obtain ζ by solving the DLP upon w2 ≡ αφ(Q)b ≡ V φ(Q)b
1 (mod q), where the DL

solver works on the base given by w1 ≡ V φ(Q)
1 (mod q). That is, z1 ≡ b ≡ ζ (mod φ(q))
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and wz1
1 ≡V φ(Q)b

1 ≡w2 (mod q). Then, for some prime a, let z2 ≡ aφ(φ(GRg)) (mod φ(Gg)).

Let z3 = gcd(φ(q),φ(Gg)). Solving the CRT upon (3) and (4) modulo (
φ(q)φ(Gg)

z3
) would re-

sult in z4 (mod φ(q)φ(Gg)
z3

), and since φ(q)φ(Gg)
z3

≡ 0 (mod φ(q)), and if φ(Q)≡ 0 (mod z3),
we have

z4 ≡ ζ (mod
φ(q)

z3
)⇒ φ(Q)z4 ≡ φ(Q)ζ (mod φ(q))

z4 ≡ aφ(φ(GRg)) (mod φ(Gg))

Hence, we have
Q(V φ(Q)z4

1 )≡ Q(V φ(Q)ζ
1 )≡V2 (mod qQ).

As such, forgery is doable. That is, the forged signature is of the form

S∗ ≡ (V φ(Q)z4
1 )(hφ(qQ)) (mod GRgqQ)

That is,
QS∗ ≡ Q(V φ(Q)z4

1 )≡V2 (mod qQ)

And,

y1 ≡ gRS∗ (mod Gg)

≡ gR(V
φ(Q)z4
1 )(hφ(qQ)) (mod GRg) (mod Gg) (mod N)

≡ gR(V φ(Q)(1)
1 )(hφ(qQ)) (mod GRg) (mod Gg) (mod N)

y2 ≡ gR(V φ(Q)
1 )(hφ(qQ)) (mod GRg) (mod Gg) (mod N)

We have y1 = y2. As such forgery can occur.

Furthermore, when φ(Q) ̸≡ 0 (mod z3), we have

z4 ≡ ζ (mod
φ(q)

z3
)⇒ φ(Q)z4 ̸≡ φ(Q)ζ (mod φ(q))

z4 ≡ aφ(φ(GRg)) (mod φ(Gg))

Hence, we have
Q(V φ(Q)z4

1 ) ̸≡ Q(V φ(Q)ζ
1 )≡V2 (mod qQ)
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Thus, to satisfy the filtering process of QS ≡V2 (mod qQ),

we utilize

Q(wz1
1 )≡ Q(V φ(Q)b

1 )≡V2 (mod qQ) (5)

In order to ensure (5) is executable, the signature is of the form

S∗ ≡ (wz1
1 )(h

φ(qQ)β ) (mod GRgqQ)

That is,
QS∗ ≡ Q(wz1

1 )≡V2 (mod qQ)

And

y1 ≡ gRS∗ (mod Gg)

≡ gR(w
z1
1 )(hφ(qQ)) (mod GRg) (mod Gg) (mod N)

≡ gR(V φ(Q)b
1 )(hφ(qQ)) (mod GRg) (mod Gg) (mod N)

y2 ≡ gR(V φ(Q)
1 )(hφ(qQ)) (mod GRg) (mod Gg) (mod N)

We have y1 = y2. As such forgery can occur.

However, the value V1 ≡ α (mod q) is not available.

9. SPECIFICATION OF KAZ-SIGN

The challenge faced by the adversary is to retrieve α from V1 ≡ α (mod GRg). It is pro-
tected by the MRP. The MRP representation is given as follows:

t =
α −V1

GRg

Due to the strategies during key generation, we have the complexity O(t) = O(q).

As such, the complexity of solving the MRP via V1 ≡ α (mod GRg) will be the determin-
ing factor in identifying the suitable key length for each security level.

The following is the security specification for δ = 0.274.
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Number of primes in P ℓ(q) n = ℓ(N) Total security level, k
128 128 999 128
192 192 1631 192
256 256 2300 256

Table 1

10. IMPLEMENTATION AND PERFORMANCE

10.1 Key Generation, Signing and Verification Time Complexity

It is obvious that the time complexity for all three procedures is in polynomial time.

10.2 Parameter sizes

We provide here information on size of the key and signature based on security level infor-
mation from Table 1 (for δ = 0.274).

NIST
Security

Level

Number of
primes

in P

Security
level,

k

Length of
parameter
N (bits)

Public
key size,

(V1,V2) (bits)

Private
Signing key

Size, SK

Signature Size
(S)

(bits)

ECC key
size

(bits)

1 128 128 999
≈ 78
+252
= 330

≈ 333 ≈ 333 256

3 192 192 1631
≈ 90
+315
405

≈ 406 ≈ 406 384

5 256 256 2300
≈ 140
+382
= 522

≈ 522 ≈ 522 521

Table 2

In the direction of the research, we also make comparison to ECC key length for the three
NIST security levels. KAZ-SIGN key length did not achieve its immediate target of having
approximately the same key length as ECC, but further research might find means and
ways.

10.3 Key Generation, Signing and Verification Ease of Implementation

The algebraic structure of KAZ-SIGN has an abundance of programming libraries available
to be utilized. Among them are:

1. GNU Multiple Precision Arithmetic Library (GMP); and

2. Standard C libraries.

13 KAZ-SIGN v1.6.1



10.4 Key Generation, Signing and Verification Empirical Performance Data

In order to obtain benchmarks, we evaluate our reference implementation on a machine us-
ing GCC Compiler Version 6.3.0 (MinGW.org GCC-6.3.0-1) on Windows 10 Pro, Intel(R)
Core(TM) i7-4710HQ CPU @ 2.50GHz and 8.00 GB RAM (64-bit operating system, x64-
based processor).

We have the following empirical results when conducting 100 key generations, 100 sign-
ings and 100 verifications:

Time (ms)
Security level

Key generation Signing Verification
128 - KAZ999 256 236 127
192 - KAZ1631 332 345 256
256 - KAZ2300 571 675 644

Table 3

11. ADVANTAGES AND LIMITATIONS

As we have seen, KAZ-SIGN can be evaluated through:

1. Key length

2. Speed

3. No verification failure

11.1 Key Length

KAZ-SIGN key length is comparable to non-post quantum algorithms such as ECC and
RSA. For 256-bit security, the KAZ-SIGN key size is approximate 522-bits. ECC would
use 521-bit keys and RSA would use 15360-bit keys.

11.2 Speed

KAZ-SIGN’s speed analysis results stem from the fact that it has short key length to achieve
256-bit security plus its textbook complexity running time for both signing and verifying
is O(n3) where parameter n here is the input length.
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11.3 No verification failure

It is apparent that the execution of KAZ-SIGN parameter suitability detection proce-
dure together with KAZ-SIGN digital signature forgery detection procedure type – 1,
type – 2, type – 3, and type – 4 within the verification procedure will enable the verifica-
tion computational process by the recipient to verify or reject a digital signature that was
received by the recipient with probability equal to 1. That is, the probability of verification
failure is 0.

11.4 Limitation

As we have seen, limitation of KAZ-SIGN can be evaluated through:

1. Based on unknown problem, the Modular Reduction Problem (MRP)

11.4.1 Based on unknown problem, the Modular Reduction Problem (MRP)

The MRP is not a known hard mathematical problem which is quantum resistant and is sub-
ject to future cryptanalysis success in solving the defined challenge either with a classical
or quantum computer.

12. CLOSING REMARKS

The KAZ-SIGN digital signature exhibits properties that might result in it being a desirable
post quantum signature scheme. In the event that new forgery methodologies are found, as
long as the procedure can also be done by the verifier, then one can add the new forgery
methodology into the verification procedure. At the same time, the same forgery methodol-
ogy can be inserted into the signing procedure in order to eliminate any chances the signer
will produce a signature that will be rejected.

To this end, the security of the MRP is an unknown fact. We opine that, the acceptance of
MRP as a potential quantum resistant hard mathematical problem will come hand in hand
with a secure cryptosystem designed upon it. We welcome all comments on the KAZ-
SIGN digital signature, either findings that nullify its suitability as a post quantum digital
signature scheme or findings that could enhance its deployment and use case in the future.

Finally, we would like to put forward our heartfelt thanks to Prof. Dr. Abderrahmane
Nitaj from Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Basse Nor-
mandie, France for insights, comments, and friendship throughout the process. Next, spe-
cial thanks to Prof. Dr. Daniel J. Bernstein from University of Illinois at Chicago, United
States of America who has given his thoughts and efforts throughout versions 1.0 until
1.5β .2 of KAZ-SIGN. Today, our participation in this NIST exercise has lead us towards
new collaborations.
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13. ILLUSTRATIVE FULL SIZE TEST VECTORS – 1

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 128. That is, P = {3,5,7, . . . ,727}. In this illustration, we
provide a valid KAZ-SIGN signature S. The valid KAZ-SIGN signature will pass all 4
KAZ-SIGN digital signature forgery detection procedure types.

N :
36074125839713232195900037838349442849885202263194537439069698009198951765514300
71528816513023400139449183391549534086592248781036129317137092037483563399346623
61455775104479726899100647924875923316015883645117612153454073013122198477918174

3430655484717223193007705468625920195527456360287632608176655 ≈ 2999

g :
6007

Gg :
23102151283542472555351033031857407110549489214984451103786304558150674606117088

000 ≈ 2274 ≈ 20.274(999) ≈ N0.274

R :
6151

GRg :

399620650696124709852000 ≈ 279 ≈ N0.079

q :
174191248036859359750069958033351987111

Q :
116431182179248680450031658440253681535
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Key generation

α :

196476610189668651834375539590674880823165744286922742833787387 ≈ 2207

V1 :
194899524029958783335387

a :
95576045435898162462926898591297049698192851768790706953504061266876604688829688
87

ω1 :
13213552022081672541383421172567197642291569021582977338374809877470026814247362
019

b :
712849563102150043508184687794612951740754028005598774986063735200998831010006747
057132535511043276800001

V2 :
8692183052973937452543725608081522880099206692068552531594512329261446225040

SK :
63049730409992579834982161621707560251764066154987702299996206236208873663322638
23517539001212100001

MRP complexity upon tαV1

t =
α −V1

GRgq
:

491657800585163724786384201761939974051 ≈ 2129
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Signing

h :
73295932922951589142318221461009847216366018762174179464840860588123073373191

r :
94644440311313516436535538137632241261301771559525281528486492570923900332364853
03

ω2 :
11924278146000559293571249563331189924910399489207325712060794519232567790806805
899

β :
28964322149342398929264477382598573723798429286078545791104134236740669918623491
8823398763716138762240001

S :
39381322487997741534934892188135583160854042132229726018647407678729332840911129
69314978996891740001

Verification

KAZ-SIGN digital signature forgery detection procedure type – 1

w0 :
0

KAZ-SIGN digital signature forgery detection procedure type – 2

SF1 :
10097269070589287716103759197732633690327277981981303529624590815555334308905802
76752628166026700001

w1 :
29284053417408453818831132990402949470526764150248422489022816863173998532005326
92562350830865040000 ̸= 0
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KAZ-SIGN digital signature forgery detection procedure type – 3

SF2 :
53611781495237774051255701682438186740748915596555741877636108783127397420219766
66507318635001880001

w2 :
−14230459007240032516320809494302603579894873464326015858988701104398064579308636
97192339638110140000 ̸= 0

KAZ-SIGN digital signature forgery detection procedure type – 4

w3 :
8692183052973937452543725608081522880099206692068552531594512329261446225040

w4 :
0

Final verification

y1 and y2 :
56716223308104667361111018920155488582517110296610738663192091826146613921171515
17993753555469587188851902600395414019752909596162954105825796772087989588585483
46985270650512513472176263500070397543969892711780071611975313265422659206968332
244331695704845804441296648765120082101079175606771307856608
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14. ILLUSTRATIVE FULL SIZE TEST VECTORS – 2

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 128. That is, P = {3,5,7, . . . ,727}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V1,V2,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS –
1 and the forged signature is of the form of S ≡ SV +GRgqQ where SV is a valid signature.
This signature will fail the KAZ-SIGN digital signature forgery detection procedure type – 1.

SV :
39381322487997741534934892188135583160854042132229726018647407678729332840911129
69314978996891740001

S :
12042955728127597120274670815307826682322730620467986510669160122092684568249137
886801848893324760001

KAZ-SIGN digital signature forgery detection procedure type – 1

w0 :
−8104823479327822966781181596494268366237326407245013908804419354219751284158024
917486869896433020000 ̸= 0

Final verification

y1 and y2 :
56716223308104667361111018920155488582517110296610738663192091826146613921171515
17993753555469587188851902600395414019752909596162954105825796772087989588585483
46985270650512513472176263500070397543969892711780071611975313265422659206968332
244331695704845804441296648765120082101079175606771307856608
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15. ILLUSTRATIVE FULL SIZE TEST VECTORS – 3

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 128. That is, P = {3,5,7, . . . ,727}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V1,V2,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS –
1 and the forged signature is of the form of S ≡ (SV (mod GRgqQ

e ))+GRgqQ where SV is a
valid signature and e is an n integer consisting some or all common primes between GRg and
Q. This signature will fail the KAZ-SIGN digital signature forgery detection procedure
type – 1.

e :
103357296372885555

SV (mod
GRgqQ

e
) :

79754335523634908931470403550288832152048751093050372563577057971732299298597720
01

S :
81048234793278229747566151488577592593843667622738971240092944635247885405157307
14660099826292792001

KAZ-SIGN digital signature forgery detection procedure type – 1

w0 :
−8104823479327822966781181596494268366237326407245013908804419354219751284158024
917486869896433020000 ̸= 0

Final verification

y1 and y2 :
56716223308104667361111018920155488582517110296610738663192091826146613921171515
17993753555469587188851902600395414019752909596162954105825796772087989588585483
46985270650512513472176263500070397543969892711780071611975313265422659206968332
244331695704845804441296648765120082101079175606771307856608
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16. ILLUSTRATIVE FULL SIZE TEST VECTORS – 4

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 128. That is, P = {3,5,7, . . . ,727}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V1,V2,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS
– 1 and conduct the CRT upon the equation pair Y1 = V2Q−1 and Y2 ≡ (V φ(Q)

1 )(hφ(qQ))
(mod GRgQ) to obtain a forge signature. This signature will fail the KAZ-SIGN digital
signature forgery detection procedure type – 2.

Y1 :
74655112919768408542199014975763442544

Y2 :
14914695613722113833275117852910196235999012705859528597800001

S :
10097269070589287716103759197732633690327277981981303529624590815555334308905802
76752628166026700001

KAZ-SIGN digital signature forgery detection procedure type – 2

SF1 :
10097269070589287716103759197732633690327277981981303529624590815555334308905802
76752628166026700001

w1 :
0

Final verification

y1 and y2 :
56716223308104667361111018920155488582517110296610738663192091826146613921171515
17993753555469587188851902600395414019752909596162954105825796772087989588585483
46985270650512513472176263500070397543969892711780071611975313265422659206968332
244331695704845804441296648765120082101079175606771307856608
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17. ILLUSTRATIVE FULL SIZE TEST VECTORS – 5

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 128. That is, P = {3,5,7, . . . ,727}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V1,V2,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS –
1 and the forge signature is constructed as per steps 3 – 14 and 25 – 29 during verification.
This signature will fail the KAZ-SIGN digital signature forgery detection procedure type – 3.

V Q :
6697552804962983964001

S :
53611781495237774051255701682438186740748915596555741877636108783127397420219766
66507318635001880001

KAZ-SIGN digital signature forgery detection procedure type – 3

SF2 :
53611781495237774051255701682438186740748915596555741877636108783127397420219766
66507318635001880001

w2 :
0

Final verification

y1 and y2 :
56716223308104667361111018920155488582517110296610738663192091826146613921171515
17993753555469587188851902600395414019752909596162954105825796772087989588585483
46985270650512513472176263500070397543969892711780071611975313265422659206968332
244331695704845804441296648765120082101079175606771307856608
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18. ILLUSTRATIVE FULL SIZE TEST VECTORS – 6

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 128. That is, P = {3,5,7, . . . ,727}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V1,V2,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS
– 1 and S ≡ (V (φ(Q))

1 )(h(φ(qQ))) (mod GRgqQ). This signature will fail the KAZ-SIGN
digital signature forgery detection procedure type – 4.

S :
38042996445964830648755454405525963151259115544886372613476250685811390913223238
89683076695993960001

KAZ-SIGN digital signature forgery detection procedure type – 4

w3 :
18613802110769639964300857169960801301058746292795838429205226770210083473670

w4 :
9921619057795702511757131561879278420959539600727285897610714440948637248630 ̸= 0

Final verification

y1 and y2 :
56716223308104667361111018920155488582517110296610738663192091826146613921171515
17993753555469587188851902600395414019752909596162954105825796772087989588585483
46985270650512513472176263500070397543969892711780071611975313265422659206968332
244331695704845804441296648765120082101079175606771307856608
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19. ILLUSTRATIVE FULL SIZE TEST VECTORS – 7

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 128. That is, P = {3,5,7, . . . ,727}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V1,V2,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS –
1 and conduct the CRT upon the equation pair Y1 ≡ 1 (mod qQ

w ) where w = gcd(Q,GRg)

and Y2 ≡ (V φ(Q)
1 )(hφ(qQ)) (mod GRg) to obtain a forge signature. This signature will fail

the KAZ-SIGN digital signature forgery detection procedure type – 4.

Y1 :
1

Y2 :
6697552804962983964001

S :
26284555642736504969299540591844723090432816234658316749546780401442801829218960
01

KAZ-SIGN digital signature forgery detection procedure type – 4

w3 :
116431182179248680450031658440253681535

w4 :
−8692183052973937452543725608081522879982775509889303851144480670821192543505 ̸= 0

Final verification

y1 and y2 :
56716223308104667361111018920155488582517110296610738663192091826146613921171515
17993753555469587188851902600395414019752909596162954105825796772087989588585483
46985270650512513472176263500070397543969892711780071611975313265422659206968332
244331695704845804441296648765120082101079175606771307856608
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20. ILLUSTRATIVE FULL SIZE TEST VECTORS – 8

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 128. That is, P = {3,5,7, . . . ,727}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V1,V2,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS – 1
and construct a forged signature with a forged α of the form A = V1 +GRgT for some
T ∈ Z and forged α is a prime. The constructed forged signature is of the form S ≡
(Aφ(Q))(hφ(qQ)) (mod GRgqQ). This signature will fail the KAZ-SIGN digital signature
forgery detection procedure type – 4.

T :
213352556447705824662451401171525808097

A :
14851561038089076109643553600947543748954979592453719290296043364531628512362307
269516045372563819387

S :
80880634017006938815494381502003284741231509940440612397389016057214202072251868
67660812680939440001

KAZ-SIGN digital signature forgery detection procedure type – 4

w3 :
18613802110769639964300857169960801301058746292795838429205226770210083473670

w4 :
9921619057795702511757131561879278420959539600727285897610714440948637248630 ̸= 0

Final verification

y1 and y2 :
56716223308104667361111018920155488582517110296610738663192091826146613921171515
17993753555469587188851902600395414019752909596162954105825796772087989588585483
46985270650512513472176263500070397543969892711780071611975313265422659206968332
244331695704845804441296648765120082101079175606771307856608
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