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1. INTRODUCTION

The proposed KAZ Digital Signature scheme, KAZ-SIGN (in Malay Kriptografi Atasi
Zarah - translated literally “cryptographic techniques overcoming particles”; particles here
referring to the photons) is built upon the hard mathematical problem coined as the Mod-
ular Reduction Problem (MRP). The idea revolves around the difficulty of reconstructing
an unknown parameter from a given modular reducted value of that parameter. The target
of the KAZ-SIGN design is to be a quantum resistant digital signature candidate with short
verification keys and signatures, verifying correctly approximately 100% of the time, based
on simple mathematics, having fast execution time and a potential candidate for seamless
drop-in replacement in current cryptographic software and hardware ecosystems.

2. THE DESIGN IDEALISME

(i) To be based upon a problem that could be proven analytically to require exponential
time to be solved;

(ii) To be able to prove analytically that the cryptosystem is indeed resistant towards
quantum computers;

(iii) To utilize problems mentioned in point (i) above in its full spectrum without having
to induce “weaknesses” in order for a trapdoor to be constructed;

(iv) To use “simple” mathematics in order to achieve maximum simplicity in design,
such that even practitioners with limited mathematical background will be able to
understand the arithmetic;

(v) Achieve 128 and 256-bit security with key length roughly equivalent to the non-
quantum secure Elliptic Curve Cryptosystem (ECC);

(vi) To achieve maximum speed upon having simplicity in design and short key length;

(vii) To have a sufficiently large signature space;

(viii) The computation overhead for both signing and verification increases slightly even if
the key size increases in the future;

(ix) To be able to be mounted on hardware with ease;

(x) The plaintext to signature expansion ratio is kept to a minimum.

One of our key strategy to obtain items (i) - (v) was by utilizing our defined Modular
Reduction Problem (MRP). It is defined in the following section.
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3. MODULAR REDUCTION PROBLEM (MRP)

Let N = ∏
j
i=1 pi be a composite number and n = ℓ(N). Let pk be a factor of N. Choose

α ∈ (2n−1,N). Compute A ≡ α (mod pk).

The MRP is, upon given the values (A,N, pk), one is tasked to determine α ∈ (2n−1,N).

4. COMPLEXITY OF SOLVING THE MRP

Let npk = ℓ(pk) be the bit length of pk. The complexity to obtain α is O(2n−npk ). When de-

ploying Grover’s algorithm on a quantum computer, the complexity to obtain α is O(2
n−npk

2 ).
In other words, if pk ≈ Nδ , for some δ ∈ (0,1), the complexity to obtain α is O(N1−δ ).
When deploying Grover’s algorithm on a quantum computer, the complexity to obtain α is
O(N

1−δ

2 ).

5. THE HIDDEN NUMBER PROBLEM (HNP) (Boneh and Venkatesan, 2001)

Fix p and u. Let Oα,g(x) be an oracle that upon input x computes the most u significant
bits of αgx (mod p). The task is to compute the hidden number α (mod p) in expected
polynomial time when one is given access to the oracle Oα,g(x). Clearly, one wishes to
solve the problem with as small u as possible. Boneh and Venkatesan (2001) demonstrated
that a bounded number of most significant bits of a shared secret are as hard to compute as
the entire secret itself.

The initial idea of introducing the HNP is to show that finding the u most significant bits of
the shared key in the Diffie-Hellman key exchange using users public key is equivalent to
computing the entire shared secret key itself.

6. THE HERMANN MAY REMARKS (Herrmann and May, 2008)

We will now observe two remarks by Herrmann and May. It discusses the ability and
inability to retrieve variables from a given modular multivariate linear equation. But before
that we will put forward a famous theorem of Minkowski that relates the length of the
shortest vector in a lattice to the determinant (see Hoffstein et al. (2008)).

Theorem 1. In an ω-dimensional lattice, there exists a non-zero vector v with

∥v∥ ≤
√

ω det(L)
1
ω

In lattices with fixed dimension we can efficiently find a shortest vector, but for arbitrary
dimensions, the problem of computing a shortest vector is known to be NP-hard under ran-
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domized reductions (see Ajtai (1998)). The LLL algorithm, however, computes in polyno-
mial time an approximation of the shortest vector, which is sufficient for many applications.

Remark 1. Let f (x1,x2, . . . ,xk) = a1x1 + a2x2 + . . .+ akxk be a linear polynomial. One
can hope to solve the modular linear equation f (x1,x2, . . . ,xk)≡ 0 (mod N), that is to be
able to find the set of solutions (y1,y2, . . . ,yk) ∈ Zk

N , when the product of the unknowns are
smaller than the modulus. More precisely, let Xi be upper bounds such that |yi| ≤ Xi for
1, . . . ,k. Then one can roughly expect a unique solution whenever the condition ∏i Xi ≤ N
holds (see Herrmann and May (2008)). It is common knowledge that under the same
condition ∏i Xi ≤ N the unique solution (y1,y2, . . . ,yk) can heuristically be recovered by
computing the shortest vector in an k-dimensional lattice by the LLL algorithm. In fact,
this approach lies at the heart of many cryptographic results (see Bleichenbacher and May
(2006); Girault et al. (1990) and Nguyen (2004)).

We would like to provide the reader with the conjecture and remark given in Herrmann and
May (2008).

Conjecture 1. If in turn we have ∏i Xi ≥ N1+ε then the linear equation f (x1,x2, . . . ,xk) =

∑
k
i=1 aixi ≡ 0 (mod N) usually has Nε many solutions, which is exponential in the bit-size

of N.

Remark 2. From Conjecture 1, there is hardly a chance to find efficient algorithms that in
general improve on this bound, since one cannot even output all roots in polynomial time.

7. THE KAZ-SIGN DIGITAL SIGNATURE ALGORITHM

7.1 Background

This section discusses the construction of the KAZ-SIGN scheme. We provide information
regarding the key generation, signing and verification procedures. But first, we will put
forward functions that we will utilize and the system parameters for all users.

7.2 Utilized Functions

Let H(·) be a hash function. Let φ(·) be the usual Euler-totient function. Let ℓ(·) be the
function that outputs the bit length of a given input.

7.3 System Parameters

From the given security parameter k, compute Q = ∏
k0
i=1 pi where pi is chosen consecu-

tively from a list of the first j-primes larger than 2, P = {pi} j
i=1 and k0 < j. Let LQ = ℓ(Q).

Next, generate a prime q where Lq = ℓ(q) ≈ LQ. Then, compute a random composite
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integer G0 =
(
210)

∏
k1
i=1 pei

i where pi is chosen randomly from the list P, ei chosen ran-
domly from Z11 and k1 < j. Then, choose a random prime R. Such R, has its own nat-
ural order in ZG0 . Let that order be denoted as G1. We can observe the natural relation
given by RG1 ≡ 1 (mod G0) where φ(G0) ≡ 0 (mod G1). Let LG1 = ℓ(G1). Ensure that
LG1qQ = ℓ(G1qQ) is either 256, 384 or 512 (depending on the security level needed). Other-
wise, tweak the generation of the parameters (G0,q,Q) accordingly. The system parameters
are (k,q,Q,R,G0,G1,LG1 ,LG1qQ).

7.3.1 A methodology for generating system parameters (G0,G1)

As mentioned in preceeding section, determine parameter j. Let N = ∏
j
i=1 pi. Choose a

random prime in g ∈ ZN . Such g, has its own natural order in ZN . Let that order be denoted
as GgN . We can observe the natural relation given by gGgN ≡ 1 (mod N) where φ(N) ≡ 0
(mod GgN).

Choose a random prime R ∈ZGgN . Such R, has its own natural order in ZGgN . Let that order
be denoted as GRg. We can observe the natural relation given by RGRg ≡ 1 (mod GgN)
where φ(GgN)≡ 0 (mod GRg).

We will then take G0 = GgN and G1 = GRg.

7.3.2 An example of methodology sub-subsection 7.3.1

Let j = 128. We have,

• N = 360741258397132321959000378383494428498852022631945374390696980091
9895176551430071528816513023400139449183391549534086592248781036129317
1370920374835633993466236145577510447972689910064792487592331601588364
5117612153454073013122198477918174343065548471722319300770546862592019
5527456360287632608176655

• g = 6007 and R = 6151

• G0 =GgN = 231021512835424725553510330318574071105494892149844511037863
04558150674606117088000=(28)(34)(53)(72)(112)(132)(17)(19)(23)(29)(31)(37)
(41)(43)(47)(53)(59)(61)(67)(71)(73)(79)(83)(89)(97)(101)(103)(107)(113)(127)
(131)(139)(163)(173)(179)(191)(233)(239)(251)(281)(293)(359).

• G1 =GRg = 799241301392249419704000=(26)(34)(53)(7)(11)(13)(17)(23)(29)(41)
(43)(53)(73)(89)(179)
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7.4 KAZ-SIGN Algorithms

The full algorithms of KAZ-SIGN are shown in Algorithms 1, 2, and 3.

Algorithm 1 KAZ-SIGN Key Generation Algorithm

Input: System parameters (k,q,Q,R,G0,G1,LG1)
Output: Public verification key pair, (V1,V2) and private signing key, SK.

1: Choose even random α ≈ 2k+LG1

2: Compute public verification key-1, V1 ≡ α (mod G1).
3: Choose random prime a and random ω1 both ≈ 232.
4: Compute secret parameter b ≡ aφ(φ(G1)) (mod ω1φ(G1)).
5: Compute public verification key-2, V2 ≡ Q(αφ(Q)b) (mod qQ).
6: Compute secret signing key, SK ≡ αφ(Q)b (mod G1qQ)
7: Output public verification keys, (V1,V2), keep signing key SK secret and destroy pa-

rameters (α,a,b,ω1).

Algorithm 2 KAZ-SIGN Signing Algorithm

Input: System parameters (k,q,Q,R,G0,G1,LG1qQ), private signing key, SK and message
to be signed, m.

Output: Signature, S
1: Let m be the message to be signed and let h = (H(m)).
2: Choose random prime r, and random ω2 both ≈ 232.
3: Compute secret parameter β ≡ rφ(φ(G1)) (mod ω2φ(G1)).
4: Compute S ≡ (SK)(h(φ(qQ)β )) (mod G1qQ).
5: if ℓ(S) ̸= LG1qQ then
6: Repeat from Step 2
7: else Continue Step 9
8: end if
9: Output signature, S, and destroy (β ,r,ω2).
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Algorithm 3 KAZ-SIGN Verification Algorithm

Input: System parameters (k,q,Q,R,G0,G1,LG1qQ), public verification key pair, (V1,V2),
message, m, and signature, S.

Output: Accept or reject signature
1: Compute h = H(m).

2: Compute Y1 ≡ (V φ(Q)
1 )(hφ(qQ)) (mod G1Q) and SF1 =CRT ([V2

Q ,Y1], [q,G1Q]).

3: Compute Y2 ≡ (V φ(Q)
1 )(hφ(qQ)) (mod G1) and SF2 =CRT ([V2

Q ,Y2], [
qQ
e ,G1]) where e=

gcd(Q,G1).
4: Compute w0 ≡ (S (mod G1qQ))−S.
5: if w0 ̸= 0 then
6: Reject signature ⊥
7: else Continue Step 9
8: end if
9: Compute w1 = ℓ(S)−LG1qQ.

10: if w1 ̸= 0 then
11: Reject signature ⊥
12: else Continue Step 14
13: end if
14: Compute w2 ≡ (S (mod G1qQ))−SF1.
15: if w2 = 0 then
16: Reject signature ⊥
17: else Continue Step 19
18: end if
19: Compute w3 ≡ (S (mod G1qQ

e ))−SF2 where e = gcd(Q,G1).
20: if w3 = 0 then
21: Reject signature ⊥
22: else Continue Step 24
23: end if
24: Compute w4 ≡ QS (mod qQ). Compute w5 = w4 −V2.
25: if w5 ̸= 0 then
26: Reject signature ⊥
27: else Continue Step 29
28: end if
29: Compute y1 ≡ RS (mod G0).

30: Compute y2 ≡ R((V φ(Q)
1 )(hφ(qQ)) (mod G1)) (mod G0).

31: if y1 = y2 then
32: accept signature
33: else reject signature ⊥
34: end if
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Steps 4, 5, 6, 7, and 8 during verification are known as the KAZ-SIGN digital signature
forgery detection procedure type – 1, steps 9, 10, 11, 12, and 13 during verification are
known as the KAZ-SIGN digital signature forgery detection procedure type – 2, steps
14, 15, 16, 17, and 18 during verification are known as the KAZ-SIGN digital signature
forgery detection procedure type – 3, steps 19, 20, 21, 22, and 23 during verification
are known as the KAZ-SIGN digital signature forgery detection procedure type – 4,
and steps 24, 25, 26, 27, and 28 during verification are known as the KAZ-SIGN digital
signature forgery detection procedure type – 5.

8. THE DESIGN RATIONALE

In this section we will analyse the rationale behind the design vis-à-vis a valid signature
parameter S.

8.1 Proof of Correctness (Verification steps 29, 30, 31, 32, 33, and 34)

We begin by discussing the rationale behind steps 29, 30, 31, 32, 33, and 34 with relation to
the verification process. Observe the following,

RS ≡ R(α(φ(Q)b))(h(φ(qQ)β )) (mod G1)

≡ R(α(φ(Q)))(h(φ(qQ))) (mod G1)

≡ R(V φ(Q)
1 (hφ(qQ)) (mod G1) (mod G0)

because α ≡ V1 (mod G1), b ≡ 1 (mod φ(G1)) and β ≡ 1 (mod φ(G1)). As such the
verification process does indeed provide an indication that the signature is indeed from an
authorized sender with the private signing key SK.

8.2 Proof of Correctness (Verification steps 4, 5, 6, 7, and 8: KAZ-SIGN digital
signature forgery detection procedure type – 1)

In order to comprehend the rationale behind steps 4, 5, 6, 7, and 8, one has to observe the
following,

w0 ≡ (S (mod G1qQ))−S = 0

because S < G1qQ.

8.3 Proof of Correctness (Verification steps 9, 10, 11, 12, and 13: KAZ-SIGN digital
signature forgery detection procedure type – 2)

In order to comprehend the rationale behind steps 9, 10, 11, 12, and 13 , one has to observe
the following,

w1 = ℓ(S)−LG1qQ = 0

7 KAZ-SIGN v1.6.3



because of steps 5, 6, 7 and 8 during signing.

8.4 Proof of Correctness (Verification steps 14, 15, 16, 17, and 18: KAZ-SIGN digital
signature forgery detection procedure type – 3)

In order to comprehend the rationale behind steps 14, 15, 16, 17, and 18, one has to observe
the following; obviously SF1 is not constructed with secret parameters SK. As such from
w2 ≡ (S (mod G1qQ))−SF1, we will have w2 ̸= 0.

8.5 Proof of Correctness (Verification steps 19, 20, 21, 22, and 23: KAZ-SIGN digital
signature forgery detection procedure type – 4)

In order to comprehend the rationale behind steps 19, 20, 21, 22, and 23, one has to observe
the following; obviously SF2 is not constructed with secret parameters SK. As such from
w3 ≡ (S (mod G1qQ

e ))−SF2, where e = gcd(Q,G1) we will have w3 ̸= 0.

8.6 Proof of Correctness (Verification steps 24, 25, 26, 27, and 28: KAZ-SIGN digital
signature forgery detection procedure type – 5)

In order to comprehend the rationale behind steps 24, 25, 26, 27, and 28, one has to observe
the following;
First we have,

hφ(qQ)β ≡ 1 (mod q)

Thus,
Qhφ(qQ)β ≡ Q (mod qQ)

Finally,
w4 ≡ QS ≡ Q(αφ(Q)b) (mod qQ)

Hence, w5 = w4 −V2 = 0.

8.7 Deriving Forged Signature Identifiable by KAZ-SIGN Digital Signature Forgery
Detection Procedure Type – 1.

An adversary utilizing a valid signature, S and resend it as follows:

SF ≡ S+G1qQx (mod θG1qQ)

for some random value of x ∈ Z and small value of θ ∈ Z, such that ℓ(SF)≈ ℓ(S). That is,
ℓ(SF) is not suspicious to the verifier. It is easy to observe that SF will pass steps 29, 30,
31, 32, 33, and 34. However, since

w0 ≡ (SF (mod G1qQ))−SF0 ̸= 0 ∈ Z

the signature will fail KAZ-SIGN digital signature forgery detection procedure type – 1.

8 KAZ-SIGN v1.6.3



8.8 Deriving Forged Signature Identifiable by KAZ-SIGN Digital Signature Forgery
Detection Procedure Type – 2

An adversary utilizing a valid signature, S and resend it as follows:

SF ≡ S (mod
G1qQ

u
)

where u is small composite of Q such that ℓ(SF) ≈ ℓ(S). That is, ℓ(SF) is not suspicious
to the verifier. As an example u = 15. It is easy to observe that SF will pass steps 29, 30,
31, 32, 33, and 34. However, this would result in ℓ(SF) ̸= LG1qQ and the signature will fail
KAZ-SIGN digital signature forgery detection procedure type – 2. That is, w1 ̸= 0.

8.9 Deriving Forged Signature Identifiable by KAZ-SIGN Digital Signature Forgery
Detection Procedure Type – 3

An adversary that constructs a forged signature S as follows; compute Y1 ≡ (V φ(Q)
1 )(hφ(qQ))

(mod G1Q) and S = CRT ([V2
Q ,Y1], [q,G1Q]), and then transmits it as a signature S would

result in
w2 ≡ (S (mod G1qQ))−SF1 = 0.

It is easy to observe that S will pass steps 29, 30, 31, 32, 33, and 34. However, the signature
will fail KAZ-SIGN digital signature forgery detection procedure type - 3.

8.10 Deriving Forged Signature Identifiable by KAZ-SIGN Digital Signature Forgery
Detection Procedure Type – 4

An adversary that constructs a forged signature S as follows; compute Y2 ≡ (V φ(Q)
1 )(hφ(qQ))

(mod G1) and S =CRT ([V2
Q ,Y2], [

qQ
e ,G1]) where e = gcd(Q,G1), and then transmits it as a

signature S would result in

w3 ≡ (S (mod
G1qQ

e
))−SF2 = 0.

where e = gcd(Q,G1). It is easy to observe that S will pass steps 29, 30, 31, 32, 33, and 34.
However, the signature will fail KAZ-SIGN digital signature forgery detection procedure
type - 4.

8.11 Deriving Forged Signature Identifiable by KAZ-SIGN Digital Signature Forgery
Detection Procedure Type - 5

An adversary that constructs a forged signature S without the private random α and at the
same time aspires to pass steps 29, 30, 31, 32, 33, and 34 would result in the need to
produce a forged signature S that would eventually produce the relation,

S ≡ (λ φ(Q)b′) (mod qQ)

9 KAZ-SIGN v1.6.3



where λ =V1 +G1t for some t ∈ Z and b′ ≡ 1 (mod φ(G1)). It is clear that α ̸≡V1 +G1t
(mod qQ) and b′ ̸≡ b (mod φ(qQ)) with high probability. As such, w5 = w4−V2 ̸= 0 with
high probability, where w4 ≡ Q(λ φ(Q)b′) (mod qQ). Thus, the signature will fail KAZ-
SIGN digital signature forgery detection procedure type - 5.

8.12 Extracting α

An approach to forge the signature would be to produce either one of the following:

1. yα1 ≡ α (mod G1qQ) OR

2. yα2 ≡ αφ(Q) (mod G1qQ).

8.12.1 Producing yα1 ≡ α (mod G1qQ)

From the public parameter V1 ≡ α (mod G1), the adversary needs to obtain the parameter
α (mod qQ) to execute the Chinese Remainder Theorem (CRT) to obtain α (mod G1qQ).
To obtain α (mod qQ), the adversary will utilize equation S. Observe that

S ≡ (αφ(Q)b)(hφ(qQ)β )≡ α
φ(Q)b ̸≡ α (mod qQ)

Thus, with the available parameters (S,V1), one is unable to produce yα1.

8.12.2 Producing yα2 ≡ αφ(Q) (mod G1qQ)

To obtain yα2, one begins with,

z1 ≡V φ(Q)
1 ≡ α

φ(Q) (mod G1).

Then, one needs to produce the parameter αφ(Q) (mod qQ). However,

z2 ≡ S ≡ (α(φ(Q)b)) ̸≡ α
φ(Q) (mod qQ).

Thus, with the available parameters (S,V1), one is unable to produce yα2.

8.13 Modular Linear Equation of S

In this direction we analyze

S ≡ (α(φ(Q)b))(h(φ(qQ)β )) (mod G1qQ)

Let

10 KAZ-SIGN v1.6.3



1. X1 ≡ αφ(Q)b (mod G1qQ)

2. X2 ≡ hφ(qQ)β (mod G1qQ)

Moving forward we have,

X1X2 −S ≡ 0 (mod G1qQ) (1)

Let X̂1 be the upper bound for X1 and X̂2 be the upper bound for X2. From Conjecture 1, if
one has the situation where X̂1X̂2 ≫ G1qQ, then there is no efficient algorithm to output all
the roots of (1). That is, (1) usually has G1qQ many solutions, which is exponential in the
bit-size of G1qQ.
To this end, since both αφ(Q)b and hφ(qQ)β are exponentially large, it is clear to conclude
that X̂1X̂2 ≫ G1qQ. This implies, there is no efficient algorithm to output all the roots of
(1).

8.14 Implementation of the Hidden Number Problem (HNP)

From S, let us denote as follows:

1. x1 ≡ α(φ(Q)b) (mod G1qQ)

2. x2 ≡ φ(qQ)β

Thus, S can be re-written as

S ≡ (x1)(hx2) (mod G1qQ) (2)

for unknown pair (x1,x2). It is obvious that (2) is the HNP.

8.15 Analysis on V2

Assume we have V1 ≡ α (mod q). Let,

W1 ≡V φ(Q)
1 ≡ α

φ(Q) (mod q)

W2 ≡V2Q−1 ≡ α
φ(Q)b ≡V φ(Q)b

1 (mod q)

The aim is to obtain the system of equations

b ≡ ζ (mod φ(q)) (3)

b ≡ aφ(φ(G1)) (mod φ(G1)) (4)

for some arbitarily chosen prime a.

11 KAZ-SIGN v1.6.3



We obtain ζ by solving the DLP upon W2 ≡ αφ(Q)b ≡ V φ(Q)b
1 (mod q), where the DL

solver works on the base given by W1 ≡ V φ(Q)
1 (mod q). That is, z1 ≡ b ≡ ζ (mod φ(q))

and W z1
1 ≡V φ(Q)b

1 ≡W2 (mod q). Then, for some prime a, let z2 ≡ aφ(φ(G1)) (mod φ(G1)).

Let z3 = gcd(φ(q),φ(G1)). Solving the CRT upon (3) and (4) modulo (φ(q)φ(G1)
z3

) would re-

sult in z4 (mod φ(q)φ(G1)
z3

), and since φ(q)φ(G1)
z3

≡ 0 (mod φ(q)), and if φ(Q)≡ 0 (mod z3),
we have

z4 ≡ ζ (mod
φ(q)

z3
)⇒ φ(Q)z4 ≡ φ(Q)ζ (mod φ(q))

z4 ≡ aφ(φ(G1)) (mod φ(G1))

Hence, we have
Q(V φ(Q)z4

1 )≡ Q(V φ(Q)ζ
1 )≡V2 (mod qQ).

As such, forgery is doable. That is, the forged signature is of the form

S∗ ≡ (V φ(Q)z4
1 )(hφ(qQ)) (mod G1qQ)

That is,
QS∗ ≡ Q(V φ(Q)z4

1 )≡V2 (mod qQ)

And,

y1 ≡ RS∗

≡ R(V φ(Q)z4
1 )(hφ(qQ)) (mod G1)

≡ R(V φ(Q)(1)
1 )(hφ(qQ)) (mod G1)

y2 ≡ R(V φ(Q)
1 )(hφ(qQ)) (mod G1) (mod G0)

We have y1 = y2. As such forgery can occur.

On the other hand, when φ(Q) ̸≡ 0 (mod z3), we have

z4 ≡ ζ (mod
φ(q)

z3
)⇒ φ(Q)z4 ̸≡ φ(Q)ζ (mod φ(q))

z4 ≡ aφ(φ(G1)) (mod φ(G1))

Hence, we have
Q(V φ(Q)z4

1 ) ̸≡ Q(V φ(Q)ζ
1 )≡V2 (mod qQ)

12 KAZ-SIGN v1.6.3



Thus, to satisfy the filtering process of QS ≡V2 (mod qQ),

we utilize

Q(W z1
1 )≡ Q(V φ(Q)b

1 )≡V2 (mod qQ) (5)

In order to ensure (5) is executable, the signature is of the form

S∗ ≡ (W z1
1 )(hφ(qQ)) (mod G1qQ)

That is,
QS∗ ≡ Q(W z1

1 )≡V2 (mod qQ)

And under the assumption that φ(G1) < φ(q) which will imply z1 ≡ 1 (mod φ(G1)), we
have

y1 ≡ RS∗

≡ R(W z1
1 )(hφ(qQ)) (mod G1)

≡ R(V φ(Q)b
1 )(hφ(qQ)) (mod G1)

≡ R(V φ(Q)(1)
1 )(hφ(qQ)) (mod G1) (mod G0)

y2 ≡ R(V φ(Q)
1 )(hφ(qQ)) (mod G1) (mod G0)

We have y1 = y2. As such forgery can occur.

However, the value V1 ≡ α (mod q) is not available.

9. DISCUSSION ON EXCLUSION OF ITERATIVE CRT PROCEDURE

In this section we discuss the exclusion of the iterative CRT procedure that is visible in
KAZ-SIGN versions 1.6.0 and 1.6.1.

Lemma 2. Consider CRT equation

x ≡ a0 (mod m0)

x ≡ a1 (mod m1)

where gcd(m0,m1) ̸= 1. Then this CRT has solution if and only if gcd(m0,m1) | (a0 −a1)

Proof. Omitted.
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Consider

G1 = (
l

∏
i=1

γ
ai
i )(

n

∏
i=1

α
ai+l
i )

Q = (
l

∏
i=1

γ
bi
i )(

m

∏
i=1

β
bi+l
i )

Then we have

G1qQ = q(
l

∏
i=1

γ
ai+bi
i )(

n

∏
i=1

α
ai+l
i )(

m

∏
i=1

β
bi+l
i )

Once attacker can forge signature by solving the following CRT equations.

S′ ≡


1 (mod gcd(Q,rei

i ))

V Q (mod gcd(G1,r
ei
i ))

V2 (mod gcd(q ·Q,rei
i ))

where rei
i = q,γai+bi

i ,αai+l ,β ai+l and V Q = (V φ(Q)
1 )(hφ(qQ)) (mod G1)

We consider the case that rei
i = γ

ai+bi
i , first. Then the forgery will succeed if the following

CRT equations are solved.

soln ≡ 1 (mod gcd(Q,γai+bi
i )) (6)

soln ≡V Q (mod gcd(G1,γ
ai+bi
i )) (7)

soln ·Q ≡V2 (mod gcd(qQ,γai+bi
i )) (8)

This implies that

soln ≡ 1 (mod γ
bi
i ) (9)

soln ≡V Q (mod γ
ai
i ) (10)

soln ·Q ≡V2 (mod γ
bi
i ) (11)

Note that equation (6) always holds, because γ
bi
i | Q and Q |V2. Therefore, it only needs to

consider that

soln ≡ 1 (mod γ
bi
i ) (12)

soln ≡V Q (mod γ
ai
i ) (13)

By Lemma 2, we are trying to do some tricks such that

V Q ̸≡ 1 (mod gcd(γai
i ,γbi

i )) (14)
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This will cause the CRT forgery cannot be conducted. We do this by choosing specific α in
key generation. Suppose 2 is one of the common factors of Q and G1. We choose α = 2ω ,
where ω is a random number. Then

V Q ≡ (V φ(Q)
1 )(hφ(qQ)) (mod G1)) (mod gcd(2ai,2bi))

≡ (αφ(Q))(hφ(qQ)) (mod gcd(2ai,2bi))

≡ ((2ω)φ(Q))(hφ(qQ)) (mod gcd(2ai,2bi))

≡ 0 (mod gcd(2ai,2bi))( if min{ai,bi} ≤ φ(Q))

By properly choosing parameters, we can make sure min{ai,bi} ≤ φ(Q). Hence, this will
make equation (14) hold.

10. DERIVING THE SECURITY LEVEL OF KAZ-SIGN

The challenge faced by the adversary is to retrieve α from V1 ≡α (mod G1). It is protected
by the MRP. The MRP representation is given as follows:

t =
α −V1

G1

Due to the strategies during key generation, we have the complexity O(t) = O(2k) where k
is the chosen security level, either 128, 192 or 256.

As such, the complexity of solving the MRP via V1 ≡ α (mod G1) will be the determining
factor in identifying the suitable key length for each security level.

Another alternative challenge faced by the adversary is to produce the secret signing key,
SK. The difficulty is twice the difficulty level of solving the MRP. Due to the strategies
during key generation, we have the complexity O(SK) = O(2t) = O(22k).

11. IMPLEMENTATION AND PERFORMANCE

11.1 Key Generation, Signing and Verification Time Complexity

It is obvious that the time complexity for all three procedures is in polynomial time.

11.2 Parameter sizes

We provide here information on size of the key and signature based on NIST security level.
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NIST
Security

Level

Security
level,

k

Public
key size,

(V1,V2) (bits)

Private
Signing key

Size, SK

Signature Size
(S)

(bits)

ECC key
size

(bits)
1 128 256 256 256 256
3 192 384 384 384 384
5 256 512 512 512 521

Table 1

In the direction of the research, we also make comparison to ECC key length for the three
NIST security levels.

11.3 Key Generation, Signing and Verification Ease of Implementation

The algebraic structure of KAZ-SIGN has an abundance of programming libraries available
to be utilized. Among them are:

1. GNU Multiple Precision Arithmetic Library (GMP); and

2. Standard C libraries.

11.4 Key Generation, Signing and Verification Empirical Performance Data

In order to obtain benchmarks, we evaluate our reference implementation on a machine us-
ing GCC Compiler Version 6.3.0 (MinGW.org GCC-6.3.0-1) on Windows 10 Pro, Intel(R)
Core(TM) i7-4710HQ CPU @ 2.50GHz and 8.00 GB RAM (64-bit operating system, x64-
based processor).

We have the following empirical results when conducting 100 key generations, 100 sign-
ings and 100 verifications:

Time (ms)
Security level

Key generation Signing Verification
128 - KAZS256 5 8 7
192 - KAZS384 7 10 9
256 - KAZS512 9 16 12

Table 2

12. ADVANTAGES AND LIMITATIONS

As we have seen, KAZ-SIGN can be evaluated through:
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1. Key length

2. Speed

3. No verification failure

12.1 Key Length

KAZ-SIGN key length is comparable to non-post quantum algorithms such as ECC and
RSA. For 256-bit security, the KAZ-SIGN key size is 512-bits. ECC would use 521-bit
keys and RSA would use 15360-bit keys.

12.2 Speed

KAZ-SIGN’s speed analysis results stem from the fact that it has short key length to achieve
256-bit security plus its textbook complexity running time for both signing and verifying
is O(n3) where parameter n here is the input length.

12.3 No Verification Failure

It is apparent that the execution of KAZ-SIGN parameter suitability detection proce-
dure together with KAZ-SIGN digital signature forgery detection procedure type – 1,
type – 2, type – 3, type – 4, and type – 5 within the verification procedure will enable
the verification computational process by the recipient to verify or reject a digital signature
that was received by the recipient with probability equal to 1. That is, the probability of
verification failure is 0.

12.4 Limitation

As we have seen, limitation of KAZ-SIGN can be evaluated through:

1. Based on unknown problem, the Modular Reduction Problem (MRP).

12.4.1 Based on unknown problem, the Modular Reduction Problem (MRP)

The MRP is not a known hard mathematical problem which is quantum resistant and is sub-
ject to future cryptanalysis success in solving the defined challenge either with a classical
or quantum computer.

13. CLOSING REMARKS

The KAZ-SIGN digital signature exhibits properties that might result in it being a desirable
post quantum signature scheme. In the event that new forgery methodologies are found, as
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long as the procedure can also be done by the verifier, then one can add the new forgery
methodology into the verification procedure. At the same time, the same forgery methodol-
ogy can be inserted into the signing procedure in order to eliminate any chances the signer
will produce a signature that will be rejected.

To this end, the security of the MRP is an unknown fact. We opine that, the acceptance of
MRP as a potential quantum resistant hard mathematical problem will come hand in hand
with a secure cryptosystem designed upon it. We welcome all comments on the KAZ-
SIGN digital signature, either findings that nullify its suitability as a post quantum digital
signature scheme or findings that could enhance its deployment and use case in the future.

Finally, we would like to put forward our heartfelt thanks to Prof. Dr. Abderrahmane
Nitaj from Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Basse Nor-
mandie, France for insights, comments, and friendship throughout the process. Next, spe-
cial thanks to Prof. Dr. Daniel J. Bernstein from University of Illinois at Chicago, United
States of America who has given his thoughts and efforts throughout versions 1.0 until
1.5β .2 of KAZ-SIGN. Today, our participation in this NIST exercise has lead us towards
new collaborations.
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14. ILLUSTRATIVE FULL SIZE TEST VECTORS – 1

The following are parameters that illustrate KAZ-SIGN for 128-bit security. In this illus-
tration, we provide a valid KAZ-SIGN signature S. The valid KAZ-SIGN signature will
pass all 6 KAZ-SIGN digital signature forgery detection procedure types.

G0 :
23102151283542472555351033031857407110549489214984451103786304558150674606117088
000

R :
6151

G1 :
399620650696124709852000

q :
222275055113138355774934753

Q :
2231763320506795843869661560
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Key generation

α :

306060707684030040439965825102368816679483393875309167008223246 ≈ 2208

V1 :
473163401356546388989636

a :
2421359807

ω1 :
2968765783

b :
212377956483079952927054364672001

V2 :
130124912811036297348980677209296858954244556535309160

SK :
11049131113586610868743754306745249844653129402139685246834558257610718373376

MRP complexity upon t

t =
α −V1

G1
:

765878107527434743563505682475015740379 ≈ 2129
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Signing

h :
92323132445097779935154047106237029502263302334133089688219267996968970913530

r :
3763831051

ω2 :
4019735110

β :
199404239488927226776340398080001

S :
247669878370593927496847629584161012924631982319547297224935397020268383648000

ℓ(S) = 258

ℓ(G1qQ) = 258

Verification

KAZ-SIGN digital signature forgery detection procedure type – 1

w0 :
0

KAZ-SIGN digital signature forgery detection procedure type – 2

w1 :
0

KAZ-SIGN digital signature forgery detection procedure type – 3

SF1 :
18958425784218289585746756961445360103102225309927921163138032559656869440000

w2 :
228711452586375637911100872622715652821529757009619376061797364460611514208000 ̸= 0

21 KAZ-SIGN v1.6.3



KAZ-SIGN digital signature forgery detection procedure type – 4

SF2 :
64756205993316169108668349448889530879943254143507889624456800

w3 :
247669878370593862740641636267991904256282533430016417281681253512378759191200 ̸= 0

KAZ-SIGN digital signature forgery detection procedure type – 5

w4 :
130124912811036297348980677209296858954244556535309160

w5 :
0

Final verification

y1 and y2 :
50975481809774567756715234497702998554764637739001111660075996
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15. ILLUSTRATIVE FULL SIZE TEST VECTORS – 2

The following are parameters that illustrate KAZ-SIGN for 128-bit security. In this illustra-
tion, we provide a forged KAZ-SIGN signature S where the system parameters, (k,q,Q,R,G0,
G1,LG1qQ) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS – 1 and
the forged signature is of the form of S≡ SV +G1qQ where SV is a valid signature. This sig-
nature will fail the KAZ-SIGN digital signature forgery detection procedure type – 1.

SV :
247669878370593927496847629584161012924631982319547297224935397020268383648000

S :
501825190526070466473228185980776996258836406614641571256342952676092936192000

KAZ-SIGN digital signature forgery detection procedure type – 1

w0 :
−254155312155476538976380556396615983334204424295094274031407555655824552544000 ̸= 0

Final verification

y1 and y2 :
50975481809774567756715234497702998554764637739001111660075996
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16. ILLUSTRATIVE FULL SIZE TEST VECTORS – 3

The following are parameters that illustrate KAZ-SIGN for 128-bit security. In this illustra-
tion, we provide a forged KAZ-SIGN signature S where the system parameters, (k,q,Q,R,G0,
G1,LG1qQ) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS – 1 and
the forged signature is of the form of S ≡ (SV (mod G1qQ

e ))+G1qQ where SV is a valid sig-
nature and where e=gcd(Q,G1). This signature will fail the KAZ-SIGN digital signature
forgery detection procedure type – 1.

e :
162376055401560

SV (mod
GRgqQ

e
) :

291394102068115694247355492284767881251583623571138151771015200

S :
254155312155476830370482624512310230689696709062975525615031126793976323559200

KAZ-SIGN digital signature forgery detection procedure type – 1

w0 :
−254155312155476538976380556396615983334204424295094274031407555655824552544000 ̸= 0

Final verification

y1 and y2 :
50975481809774567756715234497702998554764637739001111660075996
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17. ILLUSTRATIVE FULL SIZE TEST VECTORS – 4

The following are parameters that illustrate KAZ-SIGN for 128-bit security. In this illustra-
tion, we provide a forged KAZ-SIGN signature S where the system parameters, (k,q,Q,R,G0,
G1,LG1qQ) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS – 1 and
the forged signature is of the form of S ≡ SV (mod G1qQ

15 ) where SV is a valid signature.
This signature will fail the KAZ-SIGN digital signature forgery detection procedure type – 2.

SV (mod
GRgqQ

15
) :

10458253692149157785559110280652761812707852977459308128955011741498801273600

S :
10458253692149157785559110280652761812707852977459308128955011741498801273600

KAZ-SIGN digital signature forgery detection procedure type – 2

w1 :
−5 ̸= 0

Final verification

y1 and y2 :
50975481809774567756715234497702998554764637739001111660075996
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18. ILLUSTRATIVE FULL SIZE TEST VECTORS – 5

The following are parameters that illustrate KAZ-SIGN for 128-bit security. In this illustra-
tion, we provide a forged KAZ-SIGN signature S where the system parameters, (k,q,Q,R,G0,
G1,LG1qQ) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS – 1 and
conduct the CRT upon the equation pair Y1 = V2Q−1 (mod q) and Y2 ≡ (V φ(Q)

1 )(hφ(qQ))
(mod G1Q) to obtain a forge signature. This signature will fail the KAZ-SIGN digital
signature forgery detection procedure type – 3.

Y1 :
58305874827930733404562211

Y2 :
941094002833589598375885743281580526759107008672000

S :
18958425784218289585746756961445360103102225309927921163138032559656869440000

KAZ-SIGN digital signature forgery detection procedure type – 3

SF1 :
18958425784218289585746756961445360103102225309927921163138032559656869440000

w2 :
0

Final verification

y1 and y2 :
50975481809774567756715234497702998554764637739001111660075996
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19. ILLUSTRATIVE FULL SIZE TEST VECTORS – 6

The following are parameters that illustrate KAZ-SIGN for 128-bit security. In this illustra-
tion, we provide a forged KAZ-SIGN signature S where the system parameters, (k,q,Q,R,G0,
G1,LG1qQ) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS – 1 and
conduct the CRT upon the equation pair Y1 = V2Q−1 (mod qQ

e ) and Y2 ≡ (V φ(Q)
1 )(hφ(qQ))

(mod G1) where e =gcd(Q,G1) to obtain a forge signature. This signature will fail the
KAZ-SIGN digital signature forgery detection procedure type – 4.

e :
162376055401560

Y1 :
58305874827930733404562211

Y2 :
39482774808438509747200

S :
64756205993316169108668349448889530879943254143507889624456800

KAZ-SIGN digital signature forgery detection procedure type – 4

SF2 :
64756205993316169108668349448889530879943254143507889624456800

w3 :
0

Final verification

y1 and y2 :
50975481809774567756715234497702998554764637739001111660075996
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20. ILLUSTRATIVE FULL SIZE TEST VECTORS – 7

The following are parameters that illustrate KAZ-SIGN for 128-bit security. In this illustra-
tion, we provide a forged KAZ-SIGN signature S where the system parameters, (k,q,Q,R,G0,
G1,LG1qQ) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS – 1 and
S≡ (V (φ(Q))

1 )(h(φ(qQ))) (mod G1qQ). This signature will fail the KAZ-SIGN digital signature
forgery detection procedure type – 5.

S :
141663962941782831195955616476396326040506968566500248978873588438083171744000

KAZ-SIGN digital signature forgery detection procedure type – 5

w4 :
425112612678717952770924826090260525947896896124209360

w5 :
294987699867681655421944148880963666993652339588900200 ̸= 0

Final verification

y1 and y2 :
50975481809774567756715234497702998554764637739001111660075996
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21. ILLUSTRATIVE FULL SIZE TEST VECTORS – 8

The following are parameters that illustrate KAZ-SIGN for 128-bit security. In this illustra-
tion, we provide a forged KAZ-SIGN signature S where the system parameters, (k,q,Q,R,G0,
G1,LG1qQ) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS – 1 and
conduct the CRT upon the equation pair Y1 ≡ 1 (mod qQ

e ) where e = gcd(Q,G1) and

Y2 ≡ (V φ(Q)
1 )(hφ(qQ)) (mod G1) to obtain a forge signature. This signature will fail the

KAZ-SIGN digital signature forgery detection procedure type – 5.

e :
162376055401560

Y1 :
1

Y2 :
39482774808438509747200

S :
299113849804946159431756293463810371961989709015980582118741600

KAZ-SIGN digital signature forgery detection procedure type – 5

w4 :
2231763320506795843869661560

w5 :
−130124912811036297348980674977533538447448712665647600 ̸= 0

Final verification

y1 and y2 :
50975481809774567756715234497702998554764637739001111660075996
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22. ILLUSTRATIVE FULL SIZE TEST VECTORS – 9

The following are parameters that illustrate KAZ-SIGN for 128-bit security. In this illustra-
tion, we provide a forged KAZ-SIGN signature S where the system parameters, (k,q,Q,R,G0,
G1,LG1qQ) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS – 1
and construct a forged signature with a forged α of the form A = V1 + G1T for some
T ∈ Z and forged α is a prime. The constructed forged signature is of the form S ≡
(Aφ(Q))(hφ(qQ)) (mod G1qQ). This signature will fail the KAZ-SIGN digital signature
forgery detection procedure type – 5.

T :
266853658273452650560291876861467412044

A :
30389546326497976114495169776157963701677203552926550317450839618995774537
259956497415236

S :
64886012340720975458409046966274712643019556750020636160782523317333205184000

KAZ-SIGN digital signature forgery detection procedure type – 5

w4 :
425112612678717952770924826090260525947896896124209360

w5 :
294987699867681655421944148880963666993652339588900200 ̸= 0

Final verification

y1 and y2 :
50975481809774567756715234497702998554764637739001111660075996
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