
Kriptografi Atasi Zarah Digital Signature
(KAZ-SIGN)

Algorithm Specifications and Supporting Documentation

(Version 1.1)

Muhammad Rezal Kamel Ariffin1 Nur Azman Abu2 Terry Lau Shue Chien3

Zahari Mahad1 Liaw Man Cheon4 Amir Hamzah Abd Ghafar1

Nurul Amiera Sakinah Abdul Jamal1

1Institute for Mathematical Research, Universiti Putra Malaysia
2Faculty of Information & Communication Technology, Universiti Teknikal Malaysia Melaka

3Faculty of Computing & Informatics, Multimedia University Malaysia
4Antrapolation Technology Sdn. Bhd., Selangor, Malaysia



Table of Contents
1 INTRODUCTION 1
2 THE DESIGN IDEALISME 1
3 MODULAR REDUCTION PROBLEM (MRP) 2
4 COMPLEXITY OF SOLVING THE MRP 2
5 THE HIDDEN NUMBER PROBLEM (HNP) (Boneh and Venkatesan, 2001) 2
6 THE HERMANN MAY REMARKS (Herrmann and May, 2008) 2
7 THE KAZ-SIGN DIGITAL SIGNATURE ALGORITHM 3

7.1 Background 3
7.2 Utilized Functions 3
7.3 System Parameters 3
7.4 KAZ-SIGN Algorithms 4

8 THE DESIGN RATIONALE 5
8.1 Proof of correctness (Verification steps 8, 9, 10, 11, 12, 13 and 14) 5
8.2 Proof of correctness (Verification steps 2, 3, 4 and 5: KAZ-SIGN digital

signature forgery detection procedure) 5
8.3 Complexity of deriving forged signature tuple, (S1,S2 f ,S3 f ) 6
8.4 Modular linear equation of S2. 7
8.5 Implementation of the Hidden Number Problem 7

9 ANOTHER “EXPENSIVE” PROBLEM RELATED TO KAZ-SIGN: THE
SECOND ORDER DISCRETE LOGARITHM PROBLEM (2-DLP) 7

10 KEY GENERATION, SIGNING AND VERIFICATION TIME COMPLEX-
ITY 8

11 SPECIFICATION OF KAZ-SIGN 8
12 IMPLEMENTATION AND PERFORMANCE 9

12.1 Key Generation, Signing and Verification Time Complexity 9
12.2 Parameter sizes 9
12.3 Key Generation, Signing and Verification Ease of Implementation 9
12.4 Key Generation, Signing and Verification Empirical Performance Data 9

13 ADVANTAGES AND LIMITATIONS 10
13.1 Key Length 10
13.2 Speed 10
13.3 No verification failure 10
13.4 Limitation 10

13.4.1 Based on unknown problem, the Modular Reduction Problem (MRP) 11

14 CLOSING REMARKS 11
15 ILLUSTRATIVE FULL SIZE TEST VECTORS 12

i KAZ-SIGN v1.1



Name of the proposed cryptosystem: KAZ-SIGN

Principal submitter: Muhammad Rezal Kamel Ariffin
Institute for Mathematical Research
Universiti Putra Malaysia
43400 UPM Serdang
Malaysia
Email: rezal@upm.edu.my
Phone: +60123766494

Auxilliary submitters: Nor Azman Abu
Terry Lau Shue Chien
Zahari Mahad
Liaw Man Cheon
Amir Hamzah Abd Ghafar
Nurul Amiera Sakinah Abdul Jamal

Inventor of the cryptosystem: Muhammad Rezal Kamel Ariffin

Owner of the cryptosystem: Muhammad Rezal Kamel Ariffin

Alternative point of contact: Amir Hamzah Abd Ghafar
Institute for Mathematical Research
Universiti Putra Malaysia
43400 UPM Serdang
Malaysia
Email: amir hamzah@upm.edu.my
Phone: +60132723347

ii KAZ-SIGN v1.1



1. INTRODUCTION

The proposed KAZ Digital Signature scheme, KAZ-SIGN (in Malay Kriptografi Atasi
Zarah - translated literally “cryptographic techniques overcoming particles”; particles here
referring to the photons) is built upon the hard mathematical problem coined as the Mod-
ular Reduction Problem (MRP). The idea revolves around the difficulty of reconstructing
an unknown parameter from a given modular reducted value of that parameter. The target
of the KAZ-SIGN design is to be a quantum resistant digital signature candidate with short
verification keys and signatures, verifying correctly approximately 100% of the time, based
on simple mathematics, having fast execution time and a potential candidate for seamless
drop-in replacement in current cryptographic software and hardware ecosystems.

2. THE DESIGN IDEALISME

(i) To be based upon a problem that could be proven analytically to require exponential
time to be solved;

(ii) To be able to prove analytically that the cryptosystem is indeed resistant towards
quantum computers;

(iii) To utilize problems mentioned in point (i) above in its full spectrum without having
to induce “weaknesses” in order for a trapdoor to be constructed;

(iv) To use “simple” mathematics in order to achieve maximum simplicity in design,
such that even practitioners with limited mathematical background will be able to
understand the arithmetic;

(v) Achieve 128 and 256-bit security with key length roughly equivalent to the non-
quantum secure Elliptic Curve Cryptosystem (ECC);

(vi) To achieve maximum speed upon having simplicity in design and short key length;

(vii) To have a sufficiently large signature space;

(viii) The computation overhead for both signing and verification increases slightly even if
the key size increases in the future;

(ix) To be able to be mounted on hardware with ease;

(x) The plaintext to signature expansion ratio is kept to a minimum.

One of our key strategy to obtain items (i) - (v) was by utilizing our defined Modular
Reduction Problem (MRP). It is defined in the following section.

1 KAZ-SIGN v1.1



3. MODULAR REDUCTION PROBLEM (MRP)

Let N = ∏
j
i=1 pi be a composite number and n = ℓ(N). Let pk be a factor of N. Choose

α ∈ (2n−1,N). Compute A ≡ α (mod pk).

The MRP is, upon given the values (A,N, pk), one is tasked to determine α ∈ (2n−1,N).

4. COMPLEXITY OF SOLVING THE MRP

Let npk = ℓ(pk) be the bit length of pk. The complexity to obtain α is O(2n−npk ). When de-

ploying Grover’s algorithm on a quantum computer, the complexity to obtain α is O(2
n−npk

2 ).
In other words, if pk ≈ Nδ , for some δ ∈ (0,1), the complexity to obtain α is O(N1−δ ).
When deploying Grover’s algorithm on a quantum computer, the complexity to obtain α is
O(N

1−δ

2 ).

5. THE HIDDEN NUMBER PROBLEM (HNP) (Boneh and Venkatesan, 2001)

Fix p and u. Let Oα,g(x) be an oracle that upon input x computes the most u significant
bits of αgx (mod p). The task is to compute the hidden number α (mod p) in expected
polynomial time when one is given access to the oracle Oα,g(x). Clearly, one wishes to
solve the problem with as small u as possible. Boneh and Venkatesan (2001) demonstrated
that a bounded number of most significant bits of a shared secret are as hard to compute as
the entire secret itself.

The initial idea of introducing the HNP is to show that finding the u most significant bits
of the shared key in the Diffie-Hellman key exchange using users public key is equivalent
with computing the entire shared secret key itself.

6. THE HERMANN MAY REMARKS (Herrmann and May, 2008)

We will now observe two remarks by Herrmann and May. It discusses the ability and
inability to retrieve variables from a given modular multivariate linear equation. But before
that we will put forward a famous theorem of Minkowski that relates the length of the
shortest vector in a lattice to the determinant (see Hoffstein et al. (2008)).

Theorem 1. In an ω-dimensional lattice, there exists a non-zero vector v with

∥v∥ ≤
√

ω det(L)
1
ω

In lattices with fixed dimension we can efficiently find a shortest vector, but for arbitrary
dimensions, the problem of computing a shortest vector is known to be NP-hard under ran-

2 KAZ-SIGN v1.1



domized reductions (see Ajtai (1998)). The LLL algorithm, however, computes in polyno-
mial time an approximation of the shortest vector, which is sufficient for many applications.

Remark 1. Let f (x1,x2, . . . ,xk) = a1x1 + a2x2 + . . .+ akxk be a linear polynomial. One
can hope to solve the modular linear equation f (x1,x2, . . . ,xk)≡ 0 (mod N), that is to be
able to find the set of solutions (y1,y2, . . . ,yk) ∈ Zk

N , when the product of the unknowns are
smaller than the modulus. More precisely, let Xi be upper bounds such that |yi| ≤ Xi for
1, . . . ,k. Then one can roughly expect a unique solution whenever the condition ∏i Xi ≤ N
holds (see Herrmann and May (2008)). It is common knowledge that under the same
condition ∏i Xi ≤ N the unique solution (y1,y2, . . . ,yk) can heuristically be recovered by
computing the shortest vector in an k-dimensional lattice by the LLL algorithm. In fact,
this approach lies at the heart of many cryptographic results (see Bleichenbacher and May
(2006); Girault et al. (1990) and Nguyen (2004)).

We would like to provide the reader with the conjecture and remark given in Herrmann and
May (2008).

Conjecture 1. If in turn we have ∏i Xi ≥ N1+ε then the linear equation f (x1,x2, . . . ,xk) =

∑
k
i=1 aixi ≡ 0 (mod N) usually has Nε many solutions, which is exponential in the bit-size

of N.

Remark 2. From Conjecture 1, there is no hope to find efficient algorithms that in general
improve on this bound, since one cannot even output all roots in polynomial time.

7. THE KAZ-SIGN DIGITAL SIGNATURE ALGORITHM

7.1 Background

This section discusses the construction of the KAZ-SIGN scheme. We provide information
regarding the key generation, signing and verification procedures. But first, we will put
forward functions that we will utilize and the system parameters for all users.

7.2 Utilized Functions

Let H(·) be a hash function. Let DLog(·) be the discrete anti-logarithm function. That is,
from gx ≡ β (mod N), upon given (β ,g,N) one computes x = DLogg(β (mod N)). Let
φ(·) be the usual Euler-totient function. Let ℓ(·) be the function that outputs the bit length
of a given input.

7.3 System Parameters

From the given security parameter k, determine parameter j. Next generate a list of the
first j-primes larger than 2, P = {pi} j

i=1. Let N = ∏
j
i=1 pi. As an example, if j = 43, N is

256-bits. Let n = ℓ(N) be the bit length of N. Choose a random prime in g ∈ ZN of order

3 KAZ-SIGN v1.1



Gg where at most Gg ≈ Nδ for a chosen value of δ ∈ (0,1) and δ → 0. That is, gGg ≡ 1
(mod N). Choose a random prime R ∈ Zφ(N) of order GR, where GR ≈ φ(N)ε for ε → 1.
That is, choose R with a large order in Zφ(N). Let nGR = ℓ(GR) be the bit length of GR. Such
R, has its own natural order in Zφ(Gg). Let that order be denoted as GRg. We can observe the
natural relation given by RGRg ≡ 1 (mod Gg) where φ(N) ≡ 0 (mod Gg) and φ(Gg) ≡ 0
(mod GRg). Let nφ(Gg) = ℓ(φ(Gg)) be the bit length of φ(Gg). The system parameters are
(g,n,nφ(Gg),N,R,Gg,GRg).

7.4 KAZ-SIGN Algorithms

The full algorithms of KAZ-SIGN are shown in Algorithms 1, 2, and 3.

Algorithm 1 KAZ-SIGN Key Generation Algorithm

Input: System parameters (g,n,nφ(Gg),N,R,Gg,GRg)
Output: Public verification key tuple, V = (V1,V2,V3), and private signing key, α

1: Choose random α ∈ (2nφ(Gg)−2,2nφ(Gg)−1).
2: Compute verification key, V1 ≡ α (mod GRg).
3: Choose public verification key, V2 a random k-bit prime, where k is the security param-

eter.
4: Compute public verification key, V3 ≡ α (mod V2).
5: Output public verification key tuple, V = (V1,V2,V3) and private signing key α .

Algorithm 2 KAZ-SIGN Signing Algorithm

Input: System parameters (g,n,nφ(Gg),N,R,Gg,GRg), private signing key, α , and message
to be signed, m ∈ ZN

Output: Signature tuple, S = (S1,S2,S3).
1: Compute the hash value of the message, h = H(m).
2: Choose random ephemeral prime r ∈ (2nφ(Gg)−2,2nφ(Gg)−1).
3: Compute S1 ≡ Rr (mod GRg) (mod Gg).

4: Compute S2 ≡ (αr (mod V2)+h)r−1 (mod GRgV2).
5: Compute S3 ≡ r (mod V2).
6: Output signature tuple, S = (S1,S2,S3), and destroy r.

4 KAZ-SIGN v1.1



Algorithm 3 KAZ-SIGN Verification Algorithm

Input: System parameters (g,n,nφ(Gg),N,R,Gg,GRg), public verification key tuple, V =
(V1,V2,V3), message, m, and, signature tuple, S = (S1,S2,S3).

Output: Accept or reject
1: Compute the hash value of the message to be verified, h = H(m).
2: Compute w0 ≡ (S2S3)−h (mod V2).
3: Compute w1 ≡V S3

3 (mod V2).
4: if w0 ̸= w1 then
5: Reject signature ⊥
6: else Continue step 8
7: end if
8: Compute y1 ≡ gSS2

1 (mod Gg) (mod N).
9: Compute z0 ≡ Rh (mod Gg).

10: Compute z1 ≡ RV
S3
1 (mod GRg) (mod Gg).

11: Compute y2 ≡ gz0z1 (mod N).
12: if y1 = y2 then
13: accept signature
14: else reject signature ⊥
15: end if

Steps 2, 3, 4 and 5 during verification are known as the KAZ-SIGN digital signature
forgery detection procedure.

8. THE DESIGN RATIONALE

8.1 Proof of correctness (Verification steps 8, 9, 10, 11, 12, 13 and 14)

We begin by discussing the rationale behind steps 8, 9, 10, 11, 12, 13 and 14 with relation
to the verification process. Observe the following,

gSS2
1 ≡ gRr(αr (mod V2)+h)r−1

≡ gRr(V
S3
1 +h)r−1

≡ gR(V
S3
1 +h)

≡ gz0z1 (mod N).

As such the verification process does indeed provide an indication that the signature is
indeed from an authorized sender with the private signing key α .

8.2 Proof of correctness (Verification steps 2, 3, 4 and 5: KAZ-SIGN digital signa-
ture forgery detection procedure)

In order to comprehend the rationale behind steps 2, 3, 4 and 5, one has to observe the
following,

5 KAZ-SIGN v1.1



S2S3 −h ≡V S3
3 (mod V2).

Hence, w0 = w1.

8.3 Complexity of deriving forged signature tuple, (S1,S2 f ,S3 f )

An adversary utilizing a random r constructs the corresponding S1 and then computes
S2 f = (V r (mod V2)

1 + h+GRgx)r−1 (mod GRgV2) for the hash value of a message m that
the adversary wishes to forge a signature upon it and a random x ∈ ZGRg , including x = 0.
Observe that

gS
S2 f
1 ≡ gRr(V

r (mod V2)
1 +h+GRgx)r−1

≡ gRr(V
S3
1 +h)r−1

≡ gR(V
S3
1 +h)

≡ gz0z1 (mod N).

But before verification steps 8, 9, 10, 11, 12, 13 and 14 are conducted, the verifier needs to
execute verification steps 2, 3, 4 and 5.

Let S3 f = r (mod V2). The verifier will obtain

S2 f S3 f −h ≡V r (mod V2)
1 +GRgx ̸≡V S3

3 (mod V2).

For the above equation to hold, the adversary needs to identify S3 f satisfying

V
S3 f
3 −S2 f S3 f +h ≡ 0 (mod V2).

Since,
S2 f = (V

S3 f
1 +h+GRgx)S−1

3 f (mod GRgV2)

this will imply,
V

S3 f
3 − (V

S3 f
1 +h+GRgx)+h ≡ 0 (mod V2)

V
S3 f
3 −V

S3 f
1 −GRgx ≡ 0 (mod V2). (1)

Then, upon obtaining S3 f we set

S1 ≡ RS3 f (mod Gg).

We can then have

gS
S2 f
1 ≡ gR

S3 f (V
S3 f
1 +h+GRgx)S−1

3 f ≡ gR(V
S3 f
1 +h+GRgx)

≡ gR(V
S3 f
1 +h)

≡ gz0z1 (mod N).

However, to solve equation (1), the complexity is O(V2). When deploying Grover’s algo-

rithm on a quantum computer, the complexity will be O(V
1
2

2 ). Furthermore, V2 is a prime
number and the adversary will not be able to execute the Chinese Remainder Theorem to
reduce this complexity.

6 KAZ-SIGN v1.1



8.4 Modular linear equation of S2.

Let GRg be the order of R in ZGg where RGRg ≡ 1 (mod Gg).

We continue this direction by obtaining r0 ≡ (V r (mod V2)
1 +h)S−1

2 (mod GRg).

From the above, observe that one can analyze S2 as follows,

S2 ≡ (αr (mod V2)+h)r−1 ≡ (V1 +h)r−1
0 (mod GRg)

which implies

r0α
r (mod V2)− (V1 +h)r+hr0 ≡ 0 (mod GRg). (2)

Let α̂ be the upper bound for αr (mod V2) and r̂ be the upper bound for r. From Conjecture
1, if one has the situation where α̂ r̂ ≫ GRg, then there is no efficient algorithm to output
all the roots of equation (2). That is, equation (2) usually has GRg many solutions, which is
exponential in the bit-size of GRg.

To this end, since αr (mod V2) is exponentially large, it is clear to conclude that α̂ r̂ ≫ GRg.
This implies, there is no efficient algorithm to output all the roots of equation (2).

8.5 Implementation of the Hidden Number Problem

From S2 to obtain α or r, is the hidden number problem.

9. ANOTHER “EXPENSIVE” PROBLEM RELATED TO KAZ-SIGN: THE SEC-
OND ORDER DISCRETE LOGARITHM PROBLEM (2-DLP)

Let N be a composite number, g a random prime in ZN of order Gg where at most Gg ≈ Nδ

for δ ∈ (0,1) and δ → 0. That is, gGg ≡ 1 (mod N). Choose a random prime Q ∈ Zφ(N)

of order GQ, where GQ ≈ φ(N)ε for ε → 1. That is, choose Q with a large order in Zφ(N).
Such Q, has it own natural order in Zφ(Gg). Let that order be denoted as GQg. We can
observe the natural relation given by QGQg ≡ 1 (mod Gg) and φ(N)≡ 0 (mod Gg).

Then choose a random integer x ∈ Zφ(Gg) where x ≈ φ(Gg). Suppose from the relation
given by

gQx (mod φ(N)) ≡ A (mod N) (3)

one has solved the Discrete Logarithm Problem (DLP) upon equation (3) in polynomial
time on a classical computer and obtained the value X where Qx ̸≡ X (mod φ(N)) and
gX ≡ A (mod N), The relation Qx ̸≡ X (mod φ(N)) would result in the non-existence of

7 KAZ-SIGN v1.1



the discrete logarithm solution for Qx ≡ X (mod φ(N)).

The 2-DLP is, upon given the values (A,g,N,Q), one is tasked to determine x ∈ Zφ(Gg)

where x ≈ φ(Gg) such that equation (3) holds.

Let Qx ≡ T1 (mod φ(N). From the predetermined order of g ∈ ZN , during the process of
solving the DLP upon equation (3), a collision would occur prior to the full cycle of g. As
such, the process of solving the DLP upon equation (3) to obtain X ≈ Nδ would occur in
polynomial time on a classical computer. And since T1 < φ(N) and T1 ≈ N1, the relation
Qx ̸≡ X (mod φ(N)) will hold.

Furthering on the discussion, one has the relation gGg ≡ 1 (mod N). As such, from the
value X < Gg obtained from equation (3), one can construct the set of solutions given by
T0 = X +Ggt for t = 0,1,2,3, . . .. Now let Qx ≡ T1 (mod φ(N)). Following through,since
T1 is an element from the set of solutions, one can have the relation

tT1 =
T1 −X

Gg

Since Gg,X ≈Nδ , and φ(N)≈N, the complexity to obtain Tt is O(N1−δ ). When deploying
Grover’s algorithm on a quantum computer, the complexity to obtain tT1 is O(N

1−δ

2 ).

To this end, note that if one proceeds to solve the DLP upon Qx ≡ X (mod Gg), one can
obtain the value x0 ≡ x (mod GQg). From the preceding sections, this is in fact the MRP.
It is easy to see that with correct choice of parameters (x,GQg), the complexity of 2-DLP
and MRP can be made the same. Hence, a more “non-expensive” method in discussing the
needs of the KAZ-SIGN is directly via the MRP.

10. KEY GENERATION, SIGNING AND VERIFICATION TIME COMPLEXITY

It is obvious that the time complexity for all three procedures is in polynomial time.

11. SPECIFICATION OF KAZ-SIGN

The following is the security specification for δ = 0.3.

Number of primes in P, j n = ℓ(N) Total security level, k
126 980 128
199 1703 192
257 2311 256

Table 1

8 KAZ-SIGN v1.1



12. IMPLEMENTATION AND PERFORMANCE

12.1 Key Generation, Signing and Verification Time Complexity

It is obvious that the time complexity for all three procedures is in polynomial time.

12.2 Parameter sizes

We provide here information on size of the key and signature based on security level infor-
mation from Table 1 (for δ = 0.3).

NIST
Security

Level

Number of
primes
in P, j

Security
level,

k

Length of
parameter
N (bits)

Public
key size,

(V1,V2,V3,N) (bits)

Private
key size,

α

Signature Size
(S1,S2,S3)

(bits)

ECC key
size

1 126 128 980 ≈ 1315 ≈ 257 ≈ 595 256
3 199 192 1703 ≈ 2190 ≈ 385 ≈ 870 384
5 257 256 2311 ≈ 2970 ≈ 520 ≈ 1180 521

Table 2

In the direction of the research, we also make comparison to ECC key length for the three
NIST security levels. KAZ-SIGN key length did not achieve its immediate target of having
approximately the same key length as ECC, but further research might find means and
ways.

12.3 Key Generation, Signing and Verification Ease of Implementation

The algebraic structure of KAZ-SIGN has an abundance of programming libraries available
to be utilized. Among them are:

1. GNU Multiple Precision Arithmetic Library (GMP); and

2. Standard C libraries.

12.4 Key Generation, Signing and Verification Empirical Performance Data

In order to obtain benchmarks, we evaluate our reference implementation on a machine us-
ing GCC Compiler Version 6.3.0 (MinGW.org GCC-6.3.0-1) on Windows 10 Pro, Intel(R)
Core(TM) i7-4710HQ CPU @ 2.50GHz and 8.00 GB RAM (64-bit operating system, x64-
based processor).

We have the following empirical results when conducting 100 key generations, 100 sign-
ings and 100 verifications:

9 KAZ-SIGN v1.1



Time (ms)
Security level

Key generation Signing Verification
128 - KAZ980 240 210 65
192 - KAZ1703 258 287 201
256 - KAZ2311 280 583 465

Table 3

13. ADVANTAGES AND LIMITATIONS

As we have seen, KAZ-SIGN can be evaluated through:

1. Key length

2. Speed

3. No verification failure

13.1 Key Length

KAZ-SIGN key length is comparable to non-post quantum algorithms such as ECC and
RSA. For 256-bit security, the KAZ-SIGN key size is 2311-bits. ECC would use 521-bit
keys and RSA would use 15360-bit keys.

13.2 Speed

KAZ-SIGN’s speed analysis results stem from the fact that it has short key length to achieve
256-bit security plus its textbook complexity running time for both signing and verifying
is O(n3) where parameter n here is the input length.

13.3 No verification failure

It is apparent that the execution of KAZ-SIGN digital signature forgery detection pro-
cedure within the verification procedure will enable the verification computational process
by the recipient to verify or reject a digital signature that was received by the recipient with
probability equal to 1. That is, the probability of verification failure is 0.

13.4 Limitation

As we have seen, limitation of KAZ-SIGN can be evaluated through:

1. Based on unknown problem, the Modular Reduction Problem (MRP)

10 KAZ-SIGN v1.1



13.4.1 Based on unknown problem, the Modular Reduction Problem (MRP)

The MRP is not a known hard mathematical problem which is quantum resistant and is sub-
ject to future cryptanalysis success in solving the defined challenge either with a classical
or quantum computer.

14. CLOSING REMARKS

The KAZ-SIGN digital signature exhibits properties that might result in it being a desirable
post quantum signature scheme. In the event that new forgery methodologies are found, as
long as the procedure can also be done by the verifier, then one can add the new forgery
methodology into the verification procedure. At the same time, the same forgery methodol-
ogy can be inserted into the signing procedure in order to eliminate any chances the signer
will produce a signature that will be rejected.

To this end, the security of the MRP is an unknown fact. We opine that, the acceptance of
MRP as a potential quantum resistant hard mathematical problem will come hand in hand
with a secure cryptosystem designed upon it. We welcome all comments on the KAZ-
SIGN digital signature, either findings that nullify its suitability as a post quantum digital
signature scheme or findings that could enhance its deployment and use case in the future.

Finally, we would like to put forward our heartfelt thanks to Prof. Dr. Abderrahmane
Nitaj from Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Basse Nor-
mandie, France for insights, comments, and friendship throughout the process.

11 KAZ-SIGN v1.1



15. ILLUSTRATIVE FULL SIZE TEST VECTORS

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 126. That is, P = {3,5,7, . . . ,709}. We provide a valid
KAZ-SIGN signature tuple S = (S1,S2,S3) and a forged KAZ-SIGN signature tuple S =
(S1,S2 f ,S3).

N :
69013255533559012681720251530666814963249818281149574315292900710713052
41215408974961052265819675690960782286932856245381784614188147830907385
19509475256851584639095976385664268727008220428563902784158579651008511
65640432323879872602731934033220055455234960542548309849303923865055132

74564880935 ≈ 2980

g :
65459642164497762268880771384360986938244430197908157412666958150165004
51945370958701388788311600809227138503952568123349567943162861823146348
28887573764261175346542069552709709412748896511274963421591151844268956
05469302741696831132251755970768223260258123157371277144179334368882776
46635355107

Gg :
29250634696812449424349244152769570917383501158501457462378202783173809

32656000 ≈ 2161 ≈ 20.27(980) ≈ N0.3

R :
79507115854404281243408298101067497298396980767584671760851904311578736
78909435517108685447143062779242943729904838593535338457052174757975409
42681149341009449226190544557389120193096331542992030179660780088650244
59298309881832884914238211963185493136055529366833179100360581704998046
4003614819

GRg :

8483566886286446354400 ≈ 273 ≈ N0.074

12 KAZ-SIGN v1.1



α :
18779687242156091677386080344085403979082320443781957383074993726283636

6788549 ≈ 2257

V1 :
6485464545684162807749

V2 :

344569676565636603571053677181703691333 ≈ 2129

V3 :
162838652097292836550730620429103925704

tαV1 =
α −V1

GRg
:

22136546447830998305029847817842225084593445590941445632 ≈ 2184

tαV3 =
α −V3

V2
:

545018570099820577070879744882614821465 ≈ 2129

h :
89560095364541093901022818350045994288829984737249743833446268949063419
478494

r :
16035569711038969182528844988608019907938922847900957982462393179303551
1308251

S1 :
11384954496131613906580130877661667580782339973051889888763981136854398
1297167

S2 :
976155737665892225991151421120317265797796713466757232130193

13 KAZ-SIGN v1.1



S3 :
76802956395063616687958238008214787463

S2 f :
114046228720372417934121943895513766383992074451348615766193

x :
35219551155868823094245970192561908721133015590045001441675586507156516
39132932174040985720192880556061236976193058015922824932948263525234953
1954671297720

w0 for valid signature :
186217354440047865328477175716381630951

w1 for valid signature :
186217354440047865328477175716381630951

w0 for forged signature :
230954082629241480718411592931346825782

w1 for forged signature :
186217354440047865328477175716381630951

y1 and y2 :
51105114442596105695816061991102245243538685091269477908024245765805388
45372066074076545184116898463332350930607171707507694320191739167225204
82572429677813625781267920776057414219408785820858726227638707656173943
10853441958499051665398336804261329534544581275982590774133882660149065
4605450523

14 KAZ-SIGN v1.1



References

Ajtai, M. (1998). The shortest vector problem in L2 is NP-hard for randomized reductions.
In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages
10–19.

Bleichenbacher, D. and May, A. (2006). New attacks on RSA with small secret CRT-
exponents. In Public Key Cryptography-PKC 2006: 9th International Conference on
Theory and Practice in Public-Key Cryptography, New York, NY, USA, April 24-26,
2006. Proceedings 9, pages 1–13. Springer.

Boneh, D. and Venkatesan, R. (2001). Hardness of computing the most significant bits
of secret keys in Diffie-Hellman and related schemes. In Advances in Cryptology-
CRYPTO’96: 16th Annual International Cryptology Conference Santa Barbara, Cali-
fornia, USA August 18–22, 1996 Proceedings, pages 129–142. Springer.

Girault, M., Toffin, P., and Vallée, B. (1990). Computation of approximate L-th roots
modulo n and application to cryptography. In Advances in Cryptology—CRYPTO’88:
Proceedings 8, pages 100–117. Springer.

Herrmann, M. and May, A. (2008). Solving linear equations modulo divisors: On factoring
given any bits. In Advances in Cryptology-ASIACRYPT 2008: 14th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Melbourne,
Australia, December 7-11, 2008. Proceedings 14, pages 406–424. Springer.

Hoffstein, J., Pipher, J., Silverman, J. H., and Silverman, J. H. (2008). An introduction to
mathematical cryptography, volume 1. Springer.

Nguyen, P. Q. (2004). Can we trust cryptographic software? Cryptographic flaws in GNU
Privacy Guard v1. 2.3. In Advances in Cryptology-EUROCRYPT 2004: International
Conference on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004. Proceedings 23, pages 555–570. Springer.

15 KAZ-SIGN v1.1


