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1. INTRODUCTION

The proposed KAZ Digital Signature scheme, KAZ-SIGN (in Malay Kriptografi Atasi
Zarah - translated literally “cryptographic techniques overcoming particles”; particles here
referring to the photons) is built upon the hard mathematical problem coined as the Mod-
ular Reduction Problem (MRP). The idea revolves around the difficulty of reconstructing
an unknown parameter from a given modular reducted value of that parameter. The target
of the KAZ-SIGN design is to be a quantum resistant digital signature candidate with short
verification keys and signatures, verifying correctly approximately 100% of the time, based
on simple mathematics, having fast execution time and a potential candidate for seamless
drop-in replacement in current cryptographic software and hardware ecosystems.

2. THE DESIGN IDEALISME

(i) To be based upon a problem that could be proven analytically to require exponential
time to be solved;

(ii) To be able to prove analytically that the cryptosystem is indeed resistant towards
quantum computers;

(iii) To utilize problems mentioned in point (i) above in its full spectrum without having
to induce “weaknesses” in order for a trapdoor to be constructed;

(iv) To use “simple” mathematics in order to achieve maximum simplicity in design,
such that even practitioners with limited mathematical background will be able to
understand the arithmetic;

(v) Achieve 128 and 256-bit security with key length roughly equivalent to the non-
quantum secure Elliptic Curve Cryptosystem (ECC);

(vi) To achieve maximum speed upon having simplicity in design and short key length;

(vii) To have a sufficiently large signature space;

(viii) The computation overhead for both signing and verification increases slightly even if
the key size increases in the future;

(ix) To be able to be mounted on hardware with ease;

(x) The plaintext to signature expansion ratio is kept to a minimum.

One of our key strategy to obtain items (i) - (v) was by utilizing our defined Modular
Reduction Problem (MRP). It is defined in the following section.
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3. MODULAR REDUCTION PROBLEM (MRP)

Let N = ∏
j
i=1 pi be a composite number and n = ℓ(N). Let pk be a factor of N. Choose

α ∈ (2n−1,N). Compute A ≡ α (mod pk).

The MRP is, upon given the values (A,N, pk), one is tasked to determine α ∈ (2n−1,N).

4. COMPLEXITY OF SOLVING THE MRP

Let npk = ℓ(pk) be the bit length of pk. The complexity to obtain α is O(2n−npk ). When de-

ploying Grover’s algorithm on a quantum computer, the complexity to obtain α is O(2
n−npk

2 ).
In other words, if pk ≈ Nδ , for some δ ∈ (0,1), the complexity to obtain α is O(N1−δ ).
When deploying Grover’s algorithm on a quantum computer, the complexity to obtain α is
O(N

1−δ

2 ).

5. THE HIDDEN NUMBER PROBLEM (HNP) (Boneh and Venkatesan, 2001)

Fix p and u. Let Oα,g(x) be an oracle that upon input x computes the most u significant
bits of αgx (mod p). The task is to compute the hidden number α (mod p) in expected
polynomial time when one is given access to the oracle Oα,g(x). Clearly, one wishes to
solve the problem with as small u as possible. Boneh and Venkatesan (2001) demonstrated
that a bounded number of most significant bits of a shared secret are as hard to compute as
the entire secret itself.

The initial idea of introducing the HNP is to show that finding the u most significant bits of
the shared key in the Diffie-Hellman key exchange using users public key is equivalent to
computing the entire shared secret key itself.

6. THE HERMANN MAY REMARKS (Herrmann and May, 2008)

We will now observe two remarks by Herrmann and May. It discusses the ability and
inability to retrieve variables from a given modular multivariate linear equation. But before
that we will put forward a famous theorem of Minkowski that relates the length of the
shortest vector in a lattice to the determinant (see Hoffstein et al. (2008)).

Theorem 1. In an ω-dimensional lattice, there exists a non-zero vector v with

∥v∥ ≤
√

ω det(L)
1
ω

In lattices with fixed dimension we can efficiently find a shortest vector, but for arbitrary
dimensions, the problem of computing a shortest vector is known to be NP-hard under ran-
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domized reductions (see Ajtai (1998)). The LLL algorithm, however, computes in polyno-
mial time an approximation of the shortest vector, which is sufficient for many applications.

Remark 1. Let f (x1,x2, . . . ,xk) = a1x1 + a2x2 + . . .+ akxk be a linear polynomial. One
can hope to solve the modular linear equation f (x1,x2, . . . ,xk)≡ 0 (mod N), that is to be
able to find the set of solutions (y1,y2, . . . ,yk) ∈ Zk

N , when the product of the unknowns are
smaller than the modulus. More precisely, let Xi be upper bounds such that |yi| ≤ Xi for
1, . . . ,k. Then one can roughly expect a unique solution whenever the condition ∏i Xi ≤ N
holds (see Herrmann and May (2008)). It is common knowledge that under the same
condition ∏i Xi ≤ N the unique solution (y1,y2, . . . ,yk) can heuristically be recovered by
computing the shortest vector in an k-dimensional lattice by the LLL algorithm. In fact,
this approach lies at the heart of many cryptographic results (see Bleichenbacher and May
(2006); Girault et al. (1990) and Nguyen (2004)).

We would like to provide the reader with the conjecture and remark given in Herrmann and
May (2008).

Conjecture 1. If in turn we have ∏i Xi ≥ N1+ε then the linear equation f (x1,x2, . . . ,xk) =

∑
k
i=1 aixi ≡ 0 (mod N) usually has Nε many solutions, which is exponential in the bit-size

of N.

Remark 2. From Conjecture 1, there is hardly a chance to find efficient algorithms that in
general improve on this bound, since one cannot even output all roots in polynomial time.

7. THE KAZ-SIGN DIGITAL SIGNATURE ALGORITHM

7.1 Background

This section discusses the construction of the KAZ-SIGN scheme. We provide information
regarding the key generation, signing and verification procedures. But first, we will put
forward functions that we will utilize and the system parameters for all users.

7.2 Utilized Functions

Let H(·) be a hash function. Let φ(·) be the usual Euler-totient function. Let ℓ(·) be the
function that outputs the bit length of a given input.

7.3 System Parameters

From the given security parameter k, determine parameter j. Next generate a list of the
first j-primes larger than 2, P = {pi} j

i=1. Let N = ∏
j
i=1 pi. As an example, if j = 43, N

is 256-bits. Let n = ℓ(N) be the bit length of N. Choose a random prime in g ∈ ZN of
order Gg where at most Gg ≈ Nδ for a chosen value of δ ∈ (0,1) and δ → 0. That is,
gGg ≡ 1 (mod N). Choose a random prime R ∈ Zφ(N) of order GR, where GR ≈ φ(N)ε
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for ε → 1. That is, choose R with a large order in Zφ(N). Let nGR = ℓ(GR) be the bit
length of GR. Such R, has its own natural order in ZGg. Let that order be denoted as
GRg. We can observe the natural relation given by RGRg ≡ 1 (mod Gg) where φ(N) ≡ 0
(mod Gg) and φ(Gg) ≡ 0 (mod GRg). Let nφ(Gg) = ℓ(φ(Gg)) be the bit length of φ(Gg)
and nφ(GRg) = ℓ(φ(GRg)) be the bit length of φ(GRg). Let q be a random k-bit prime. Let
Q = ∏

25
i=1 pi = 116431182179248680450031658440253681535. Ensure that φ(φ(GRg))<

φ(φ(Q)). The system parameters are (g,k,q,Q,N,R,Gg,GRg,n,nφ(Gg)).

7.4 KAZ-SIGN Algorithms

The full algorithms of KAZ-SIGN are shown in Algorithms 1, 2, and 3.

Algorithm 1 KAZ-SIGN Key Generation Algorithm

Input: System parameters (g,k,q,Q,N,R,Gg,GRg,n,nφ(Gg))
Output: Public verification key pair, (V,WA,WB), and private signing key, α

1: Choose random α ∈ (2nφ(Gg)−2,2nφ(Gg)−1).
2: Compute public verification key, V ≡ α (mod GRgq). Let αF ≡V (mod GRg).
3: if gcd(V,GRgQ) ̸= 1 or gcd(αF ,GRgQ) ̸= 1 then
4: Repeat from Step 1.
5: end if
6: Determine the order of α in ZGRgQ, denoted as GαGRgQ. That is, α

GαGRgQ ≡ 1
(mod GRgQ). Ensure that GαGRgQ has minimum length of 76-bits (for 128-bit security
level), minimum length of 110-bits (for 192-bit security level) and minimum length of
135-bits (for 256-bit security level).

7: Determine the order of V in ZGRgQ, denoted as GV GRgQ. That is, V GV GRgQ ≡ 1
(mod GRgQ). Ensure that GV GRgQ has minimum length of 76-bits (for 128-bit security
level), minimum length of 110-bits (for 192-bit security level) and minimum length of
135-bits (for 256-bit security level).

8: Determine the order of αF in ZGRgQ, denoted as GαF GRgQ. That is, α
GαF GRgQ

F ≡ 1
(mod GRgQ)

9: Compute W0 ≡ gcd(φ(GRg),GV GRgQ) and WA =
GV GRgQ

W0
.

10: Compute Z1 ≡ αV−1 (mod GRgQ). Determine the order of Z1 in ZGRgQ, denoted as

GZ1GRgQ. That is, Z
GZ1GRgQ

1 ≡ 1 (mod GRgQ).
11: Compute Z2 ≡ αα

−1
F (mod GRgQ). Determine the order of Z2 in ZGRgQ, denoted as

GZ2GRgQ. That is, Z
GZ2GRgQ

2 ≡ 1 (mod GRgQ).
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12: if GV GRgQ ̸≡ 0 (mod GαF GRgQ) or φ(Q)WA ≡ 0 (mod GZ1GRgQ) or φ(Q)WA ≡ 0
(mod GZ2GRgQ) then

13: Repeat from Step 1.
14: end if
15: Compute WB ≡ numer(

GαGRgQ

φ(Q) ). That is, φ(Q)WB ≡ 0 (mod GαGRgQ).
16: Output public verification key pair, (V,WA,WB) and keep signing key α secret.

Algorithm 2 KAZ-SIGN Signing Algorithm

Input: System parameters (g,k,q,Q,N,R,Gg,GRg,n,nφ(Gg)), private signing key, α , mes-
sage to be signed, m ∈ ZN , and V .

Output: Signature and salt, (S,σ)
1: Let m ∈ ZN be the message to be signed.
2: Choose salt σ ∈ {0,1}32 and let h = H(m||σ) ∈ Z.
3: if h = H(m||σ) ∈ Z is not a prime then
4: Repeat from Step 2
5: end if
6: Determine the order of h in ZQ. Denote the order as GhQ. That is, hGhQ ≡ 1 (mod Q).
7: Determine the order of h in ZGRgQ. Denote the order as GhGRgQ. That is, hGhGRgQ ≡ 1

(mod GRgQ).
8: if GhGRgQ ≥ GV GRgQ or GhGRgQ ≥ GαGRgQ, or GαGRgQ ̸≡ 0 (mod GhGRgQ), or GV GRgQ ̸≡

0 (mod GhGRgQ), or GhGRgQ ̸≡ 0 (mod WB), or φ(Q) ̸≡ 0 (mod GhQ) then
9: Repeat from Step 2 by choosing new salt σ ∈ {0,1}32.

10: end if
11: Choose random ephemeral prime β ∈ (2nφ(Gg)−2,2nφ(Gg)−1). Determine the order of β

in ZGhQ . Denote the order as GβGhQ
. That is, β

GβGhQ ≡ 1 (mod GhQ).

12: Determine the order of β in
ZGhGRgQ

WB
. Denote the order as GβGhGRgQinvWB. That is,

β
GβGhGRgQinvWB ≡ 1 (mod

GhGRgQ

WB
).

13: if φ(φ(GRg)) ̸≡ 0 (mod GβGhQ
), or φ(φ(GRg)) ̸≡ 0 (mod GβGhGRgQinvWB) then

14: Repeat from Step 2, by choosing new salt σ ∈ {0,1}32.
15: end if
16: Choose random ephemeral r0,r1 ∈ Zφ(GRgqQ)

17: Compute

S ≡ (α(φ(GRgQ)r0+φ(Q)))(h(φ(GRgQ)r1+β
(φ(φ(GRg))) (mod φ(GRgqQ)))) (mod GRgqQ)

18: Output signature and salt, (S,σ), and destroy (β ,r0,r1).
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Algorithm 3 KAZ-SIGN Verification Algorithm

Input: System parameters (g,k,q,Q,N,R,Gg,GRg,n,nφ(Gg)), public verification key pair,
(V,W ), message, m, signature and salt, (S,σ).

Output: Accept or reject
1: Determine h = nextprime(H(m||σ)).

2: Determine the order of V in ZGRgQ, denoted as GV GRgQ. That is, V GV GRgQ ≡ 1
(mod GRgQ).

3: Determine the order of h in ZGRgQ. Denote the order as GhGRgQ. That is, hGhGRgQ ≡ 1
(mod GRgQ).

4: if GV GRgQ ̸≡ 0 (mod GhGRgQ) then
5: Reject signature ⊥
6: else Continue Step 8
7: end if
8: Compute w0 ≡ S (mod GRgqQ)−S.
9: if w0 ̸= 0 then

10: Reject signature ⊥
11: else Continue Step 13
12: end if
13: Compute w1 ≡ Sh−1 (mod GRgQ). Compute w2 ≡ V φ(Q) (mod GRgQ). Compute

w3 = w1 −w2.
14: if w3 = 0 then
15: Reject signature ⊥
16: else Continue Step 18
17: end if
18: Compute w4 ≡ Sh−1 (mod GRgQ). Compute w5 ≡ α

φ(Q)
F (mod GRgQ). Compute

w6 = w4 −w5.
19: if w6 = 0 then
20: Reject signature ⊥
21: else Continue Step 23
22: end if
23: Compute w7 ≡ Sh−1 (mod GRgQ). Compute w8 ≡ w7V−φ(Q) (mod GRgQ). Compute

w9 ≡ wWA
8 (mod GRgQ).

24: if w9 = 1 then
25: Reject signature ⊥
26: else Continue Step 28
27: end if
28: Compute w10 ≡ Sh−1 (mod GRgQ). Compute w11 ≡ w10α

−φ(Q)
F (mod GRgQ). Com-

pute w12 ≡ wWA
11 (mod GRgQ).
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29: if w12 = 1 then
30: Reject signature ⊥
31: else Continue Step 33
32: end if
33: Compute w13 ≡ Sh−1 (mod Q).
34: if w13 ̸= 1 then
35: Reject signature ⊥
36: else Continue Step 38
37: end if
38: Compute w14 ≡ SWB (mod GRgQ). Compute w15 ≡ hWB (mod GRgQ). Compute w16 =

w14 −w15.
39: if w16 ̸= 0 then
40: Reject signature ⊥
41: else Continue Step 43
42: end if
43: Compute the following procedure:
44: Set w17 = 0
45: Set modulus = 0
46: VQ ≡V φ(Q) (mod GRg)
47: for each factor rei

i of GRgQ do
48: for soln = 0,1,2, . . . ,rei

i −1 do
49: if soln mod gcd(Q,rei

i ) ̸≡ h (mod gcd(Q,rei
i )) then next; end if

50: if soln mod gcd(GRg,r
ei
i )̸≡ h ·VQ mod gcd(GRg,r

ei
i ) then next; end if

51: if solnWB mod gcd(GRgQ,rei
i )̸≡ hWB mod gcd(GRgQ,rei

i )then next; end if
52: break
53: end for
54: w17 =CRT ([w17,soln], (modulus,rei

i ))
55: modulus = modulus · rei

i
56: end for
57: Compute w18 ≡W17 −S (mod GRgQ).
58: if w18 = 0 then
59: Reject signature ⊥
60: else Continue Step 62
61: end if
62: Compute the following procedure:
63: Set w19 = 0
64: Set modulus = 0
65: αFQ ≡ α

φ(Q)
F (mod GRg)
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66: for each factor rei
i of GRgQ do

67: for soln = 0,1,2, . . . ,rei
i −1 do

68: if soln mod gcd(Q,rei
i ) ̸≡ h (mod gcd(Q,rei

i )) then next; end if
69: if soln mod gcd(GRg,r

ei
i )̸≡ h ·αFQ mod gcd(GRg,r

ei
i ) then next; end if

70: if solnWB mod gcd(GRgQ,rei
i )̸≡ hWB mod gcd(GRgQ,rei

i )then next; end if
71: break
72: end for
73: w19 =CRT ([w19,soln], (modulus,rei

i ))
74: modulus = modulus · rei

i
75: end for
76: Compute w20 ≡W19 −S (mod GRgQ).
77: if w20 = 0 then
78: Reject signature ⊥
79: else Continue Step 81
80: end if
81: Compute y1 ≡ g(R

S (mod Gg) (mod N).

82: Compute y2 ≡ g(R
(V φ(Q)(h) (mod GRg)) (mod Gg)) (mod N).

83: if y1 = y2 then
84: accept signature
85: else reject signature ⊥
86: end if

Steps 3, 4, 5, 6, and 7 during verification are known as the KAZ-SIGN digital signature
forgery detection procedure type – 1, steps 8, 9, 10, 11, and 12 during verification are
known as the KAZ-SIGN digital signature forgery detection procedure type – 2, steps
13, 14, 15, 16, and 17 are known as the KAZ-SIGN digital signature forgery detection
procedure type – 3, steps 18, 19, 20, 21, and 22 are known as the KAZ-SIGN digital
signature forgery detection procedure type – 4, steps 23, 24, 25, 26, and 27 are known as
the KAZ-SIGN digital signature forgery detection procedure type – 5, steps 28, 29, 30,
31, and 32 are known as the KAZ-SIGN digital signature forgery detection procedure
type – 6, steps 33, 34, 35, 36, and 37 are known as the KAZ-SIGN digital signature
forgery detection procedure type – 7, steps 38, 39, 40, 41, and 42 are known as the
KAZ-SIGN digital signature forgery detection procedure type – 8, steps 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, and 61 are known as the KAZ-SIGN
digital signature forgery detection procedure type – 9, and steps 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, and 80 are known as the KAZ-SIGN digital
signature forgery detection procedure type – 10.
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8. THE DESIGN RATIONALE

8.1 A conjecture related to the values g=6007, R=6151, Q=11643118217924868045
0031658440253681535 and N= ∏

j
i=1 pi for determined value of j.

Please refer to Table 1 for values of j corresponding to 128, 192 and 256-bit security level.
The following conjecture is a result of an empirical finding from a 1000 data set.

Conjecture 2. Let g= 6007, R= 6151, Q= 116431182179248680450031658440253681535,
N = ∏

j
i=1 pi for determined value of j. Suppose ρ ∈ ZGRgQ where gcd(ρ,GRgQ) = 1, we

have the following tabulated information,

Minimum length order
of ρ in ZGRgQ

Maximum length order
of ρ in ZGRgQ

Average length order
of ρ in ZGRgQ

128-bit security
level ( j = 180) 66-bits 76-bits 74-bits

192-bit security
level ( j = 258) 99-bits 110-bits 108-bits

258-bit security
level ( j = 342) 124-bits 135-bits 133-bits

Table 1

8.2 The complexity of step 8 during signing

8.2.1 The complexity of finding GhGRgQ < GV GRgQ and GhGRgQ < GαGRgQ

From steps 6 and 7 during key generation and Conjecture 2, the relations GhGRgQ < GV GRgQ
and GhGRgQ < GαGRgQ can be obtained in polynomial time.

8.2.2 The complexity of finding GαGRgQ ≡ 0 (mod GhGRgQ)

Since we have the relations:

1. GhGRgQ < GαGRgQ

2. φ(GRgQ)≡ 0 (mod GαGRgQ)

3. φ(GRgQ)≡ 0 (mod GhGRgQ),

the relation GαGRgQ ≡ 0 (mod GhGRgQ) can be obtained in polynomial time.
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8.2.3 The complexity of finding GV GRgQ ≡ 0 (mod GhGRgQ)

Since we have the relations:

1. GhGRgQ < GV GRgQ

2. φ(GRgQ)≡ 0 (mod GV GRgQ)

3. φ(GRgQ)≡ 0 (mod GhGRgQ),

the relation GV GRgQ ≡ 0 (mod GhGRgQ) can be obtained in polynomial time.

8.2.4 The complexity of finding GhGRgQ ≡ 0 (mod WB)

Since we have:

1. GαGRgQ ≡ 0 (mod WB)

2. GαGRgQ ≡ 0 (mod GhGRgQ) can be obtained in polynomial time

the relation GhGRgQ ≡ 0 (mod WB) can be obtained in polynomial time.

8.2.5 The complexity of finding φ(Q)≡ 0 (mod GhQ)

From the relations:

1. hφ(Q) ≡ 1 (mod Q)

2. hGhQ ≡ 1 (mod Q), and

the relation φ(Q)≡ 0 (mod GhQ) can be obtained in polynomial time.

8.3 The complexity of step 13 during signing

8.3.1 The complexity of finding φ(φ(GRg))≡ 0 (mod GβGhQ
)

From the relations:

1. Rφ(φ(N)) ≡ 1 (mod φ(N))

2. RGRg ≡ 1 (mod Gg)

3. φ(N)≡ 0 (mod Gg)

4. φ(φ(N))≡ 0 (mod GRg), which implies φ(φ(φ(φ(N))))≡ 0 (mod φ(φ(GRg)))
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and since N is a product of first j−primes larger than 2 from the set P = {pi} j
i=1, it is clear

that the prime decompositions of φ(φ(GRg)) consists of small primes from the set P.

Furthermore, from the relations:

5. hβ (φ(φ(Q)) (mod GhQ) ≡ h (mod Q)

6. hβ
(G

βGhQ
)
(mod GhQ) ≡ h (mod Q) which implies φ(φ(Q))≡ 0 (mod GβGhQ

)

7. GβGhQ
< φ(φ(GRg))< φ(φ(Q))

8. φ(φ(Q))≡ 0 (mod φ(φ(GRg))) with high probability

the relation φ(φ(GRg))≡ 0 (mod GβGhQ
) can be obtained in polynomial time.

8.3.2 The complexity of finding φ(φ(GRg))≡ 0 (mod GβGhGRgQinvWB)

From the relations:

1. hφ(GRgQ) ≡ 1 (mod GRgQ)

2. hGhGRgQ ≡ 1 (mod GRgQ)

3. φ(GRgQ)≡ 0 (mod GhGRgQ)

4. β φ(φ(GRgQ)) ≡ 1 (mod φ(GRgQ))

5. β φ(φ(GRgQ)) ≡ 1 (mod GhGRgQ)

6. GhGRgQ ≡ 0 (mod WB)

7. β φ(φ(GRgQ)) ≡ 1 (mod
GhGRgQ

WB
)

8. φ(φ(GRgQ))≡ 0 (mod GβGhGRgQinvWB)

9. GβGhGRgQinvWB < φ(φ(GRg))< φ(φ(GRgQ))

10. φ(φ(GRgQ))≡ 0 (mod φ(φ(GRg))) with high probability

the relation φ(φ(GRg))≡ 0 (mod GβGhGRgQinvWB) can be obtained in polynomial time.
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8.4 Proof of correctness (Verification steps 81, 82, 83, 84, 85, and 86)

We begin by discussing the rationale behind steps 81, 82, 83, 84, 85, and 86 with relation to
the verification process. Observe the following,

g(R
S (mod Gg)) ≡ gR(α

(φ(GRgQ)r0+φ(Q))
)(h

(φ(GRgQ)r1+β
(φ(φ(GRg))) (mod φ(GRgqQ)))

) (mod GRg) (mod Gg)

≡ gR((α(φ(Q)))(h(1)) (mod GRg)) (mod Gg) ≡ g(R
((V φ(Q)(h) (mod GRg)) (mod Gg)) (mod N)

because α ≡V (mod GRg). As such the verification process does indeed provide an indi-
cation that the signature is indeed from an authorized sender with the private signing key
α .

8.5 Proof of correctness (Verification steps 8, 9, 10, 11, and 12: KAZ-SIGN digital
signature forgery detection procedure type – 2)

In order to comprehend the rationale behind steps 8, 9, 10, 11, and 12, one has to observe
the following,

w0 ≡ S (mod GRgqQ)−S = 0

because S < GRgqQ.

8.6 Proof of correctness (Verification steps 13, 14, 15, 16, and 17: KAZ-SIGN digital
signature forgery detection procedure type – 3)

In order to comprehend the rationale behind steps 13, 14, 15, 16, and 17, one has to observe
the following;

w1 ≡ Sh−1 ≡ α
φ(Q)(h(β

(φ(φ(GRg))) (mod φ(GRgQ)))h−1 ̸≡ w2 ≡V φ(Q) (mod GRgQ).

Hence, w3 ̸= 0.

8.7 Proof of correctness (Verification steps 18, 19, 20, 21, and 22: KAZ-SIGN digital
signature forgery detection procedure type – 4)

In order to comprehend the rationale behind steps 18, 19, 20, 21, and 22, one has to observe

w4 ≡ Sh−1 ≡ α
φ(Q)(h(β

(φ(φ(GRg))) (mod φ(GRgQ)))h−1 ̸≡ w5 ≡ α
φ(Q)
F (mod GRgQ).

Hence, w6 ̸= 0.
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8.8 Proof of correctness (Verification steps 23, 24, 25, 26, and 27: KAZ-SIGN digital
signature forgery detection procedure type – 5)

In order to comprehend the rationale behind steps 23, 24, 25, 26, and 27, one has to observe

w7 ≡ Sh−1 ≡ α
φ(Q)(h(β

(φ(φ(GRg))) (mod φ(GRgQ)))h−1 ̸≡V φ(Q) (mod GRgQ).

Hence,

w8 ≡ w7V−φ(Q) ≡ (αV−1)φ(Q)(h(β
(φ(φ(GRg))) (mod φ(GRgQ))−1) (mod GRgQ).

Since during key generation we have the condition φ(Q)WA ̸≡ 0 (mod GZ1GRgQ), we can
conclude that

w9 ≡ wWA
8 ̸≡ 1 (mod GRgQ).

8.9 Proof of correctness (Verification steps 28, 29, 30, 31, and 32: KAZ-SIGN digital
signature forgery detection procedure type – 6)

In order to comprehend the rationale behind steps 28, 29, 30, 31, and 32, one has to observe

w10 ≡ Sh−1 ≡ α
φ(Q)(h(β

(φ(φ(GRg))) (mod φ(GRgQ)))h−1 ̸≡ α
φ(Q)
F (mod GRgQ).

Hence,

w11 ≡ w10α
−φ(Q)
F ≡ (αα

−1
F )φ(Q)(h(β

(φ(φ(GRg))) (mod φ(GRgQ))−1) (mod GRgQ).

Since during key generation we have the condition φ(Q)WA ̸≡ 0 (mod GZ2GRgQ), we can
conclude that

w12 ≡ wWA
11 ̸≡ 1 (mod GRgQ).

8.10 Proof of correctness (Verification steps 33, 34, 35, 36, and 37: KAZ-SIGN digi-
tal signature forgery detection procedure type – 7)

In order to comprehend the rationale behind steps 33, 34, 35, 36, and 37, one has to observe
since we have the relations φ(Q)≡ 0 (mod GhQ) and φ(φ(GRg))≡ 0 (mod GβGhQ

) where

β
GβGhQ ≡ 1 (mod GhQ), we can conclude

w13 ≡ Sh−1 ≡ h(φ(GRgQ)r1+β
(φ(φ(GRg))) (mod φ(GRgQ)))h−1

≡ h(β
(φ(φ(GRg))) (mod φ(Q))))h−1 ≡ hh−1 ≡ 1 (mod Q).
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8.11 Proof of correctness (Verification steps 38, 39, 40, 41, and 42: KAZ-SIGN digi-
tal signature forgery detection procedure type – 8)

In order to comprehend the rationale behind steps 38, 39, 40, 41, and 42, one has to observe

1. φ(Q)WB ≡ 0 (mod GαGRgQ)

2. GhGRgQ ≡ 0 (mod WB)

3. φ(φ(GRg))≡ 0 (mod GβGhGRgQinvWB)

w14 ≡ SWB ≡ (αWB(φ(GRgQ)r0+φ(Q)))(h(WB(φ(GRgQ)r1+WBβ
(φ(φ(GRg))) (mod GRgqQ)))

≡ (1)(h(WBβ
(φ(φ(GRg))) (mod GRgQ)))

≡ h(WBβ

(G
βGhGRgQinvWB

)

(mod GhGRgQ))

≡ h(WB(β
(G

βGhGRgQinvWB
)

(mod
GhGRgQ

WB
)))

≡ hW (1)
B ≡ hWB (mod GRgQ).

8.12 Proof of correctness (Verification steps 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, and 80: KAZ-SIGN digital signature forgery detection procedure
type – 9 and type – 10)

In order to comprehend the rationale behind steps 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, and 80, one has to observe the relations given by

S ≡ (α(φ(Q)))(h(β
(φ(φ(GRg))) (mod φ(GRgQ)))) (mod GRgQ),

where S is a valid KAZ-SIGN digital signature, V ̸≡α (mod GRgQ) and αF ̸≡α (mod GRgQ),
the output of KAZ-SIGN digital signature forgery detection procedure type – 9 and type –
10 upon valid KAZ-SIGN digital signature S would result in w18 ̸= 0 and w20 ̸= 0.

8.13 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 2.

An adversary utilizing a valid signature, S and resends it as follows:

SF1 ≡ S+GRgqQx (mod θGRgqQ)
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for some random value of x ∈ Z and small value of θ ∈ Z, such that ℓ(SF1)≈ ℓ(S). That is,
ℓ(SF1) is not suspicious to the verifier. It is easy to observe that SF1 will pass steps 81, 82,
83, 84, 84, 85, and 86. However, since

w0 ≡ SF1 (mod GRgqQ)−SF1 ̸= 0 ∈ Z

the signature pair will fail KAZ-SIGN digital signature forgery detection procedure type –
2.

8.14 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 3

An adversary utilizing V , random parameters (r0,r1,r2) and sends either one of the follow-
ing parameters

SF2 ≡ (V (φ(GRgQ)r0+φ(Q)))(h(φ(GRgQ)r1+1)) (mod GRgqQ)

SF3 ≡ (V (φ(GRgQ)r0+φ(Q)))(h(φ(GRgQ)r1+1))+GRgQr2 (mod GRgqQ)

would result in SF2, SF3 passing steps 81, 82, 83, 84, 84, 85, and 86. However, since for
i = 2,3 we will have

w1 ≡ SFih−1 ≡ w2 ≡V φ(Q) (mod GRgQ).

Hence, w3 = w1 − w2 = 0. Thus, the signatures will fail KAZ-SIGN digital signature
forgery detection procedure type - 3.

8.15 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 4

An adversary utilizing αF ≡V (mod GRg), random parameters (r0,r1,r2) and sends either
one of the following parameters

SF4 ≡ (α
(φ(GRgQ)r0+φ(Q))
F )(h(φ(GRgQ)r1+1)) (mod GRgqQ)

SF5 ≡ (α
(φ(GRgQ)r0+φ(Q))
F )(h(φ(GRgQ)r1+1))+GRgQr2 (mod GRgqQ)

would result in SF4,SF5 passing steps 81, 82, 83, 84, 84, 85, and 86.
However, since for i = 4,5, we will have

w4 ≡ SFih−1 ≡ w5 ≡ α
φ(Q)
F (mod GRgQ).

Hence, w6 = w4 − w5 = 0. Thus, the signatures will fail KAZ-SIGN digital signature
forgery detection procedure type – 4.
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8.16 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 5

An adversary utilizing V , random parameters (r0,r1,r2,β ) and sends either one of the fol-
lowing parameters

SF6 ≡ (V (φ(GRg)φ(Q)r0+φ(Q)))(h(φ(GRg)φ(Q)r1+1)) (mod GRgqQ)

SF7 ≡ (V (φ(GRg)φ(Q)r0+φ(Q)))(h(φ(GRg)φ(Q)r1+1))+GRgQr2 (mod GRgqQ)

SF8 ≡ (V (φ(GRg)φ(Q)r0+φ(Q)))(h(φ(GRg)φ(Q)r1+β
(φ(φ(GRg))) (mod φ(GRgqQ))) (mod GRgqQ)

SF9 ≡ (V (φ(GRgQ)r0+φ(Q)))(h(φ(GRgQ)r1+1)) (mod GRgqQ)

SF10 ≡ (V (φ(GRgQ)r0+φ(Q)))(h(φ(GRgQ)r1+1))+GRgQr2 (mod GRgqQ)

SF11 ≡ (V (φ(GRgQ)r0+φ(Q)))(h(φ(GRgQ)r1+β
(φ(φ(GRg))) (mod φ(GRgqQ))) (mod GRgqQ)

would result in SF6,SF7,SF8,SF9,SF10,SF11 passing steps 81, 82, 83, 84, 84, 85, and 86.
However, since for i = 6,7, we will have

w7 ≡ SFih−1 ≡ (V (φ(GRg)φ(Q)r0+φ(Q)))(h(φ(GRg)φ(Q)r1)) (mod GRgqQ).

Hence,

w8 ≡ w7 ·V−φ(Q) ≡ (V (φ(GRg)φ(Q)r0))(h(φ(GRg)φ(Q)r1)) (mod GRgQ).

Following through we have,

w9 = wWA
8 ≡ (V (φ(GRg)φ(Q)r0)WA)(h(φ(GRg)φ(Q)r1)WA)≡ 1 (mod GRgQ)

because WA =
GV GRgQ

W0
, where W0 = gcd(φ(GRg),GV GRgQ) and GV GRgQ ≡ 0 (mod GhGRgQ)

Thus, the signatures will fail KAZ-SIGN digital signature forgery detection procedure type
– 5.

For SF8 we can observe

w7 ≡ SF8h−1 ≡ (V (φ(GRg)φ(Q)r0+φ(Q))(h(φ(GRg)φ(Q)r1+β
(φ(φ(GRg)))−1 (mod φ(GRgQ))) (mod GRgQ).

Hence, w8 ≡ w7 ·V−φ(Q) ≡ h(β
(φ(φ(GRg)))−1 (mod φ(GRgQ))) (mod GRgQ). Following through

we will have

w9 ≡ wWA
8 ≡ (V (φ(GRg)φ(Q)r0)WA)(h(φ(GRg)φ(Q)r1+β

(φ(φ(GRg)))−1 (mod φ(GRgQ))WA))

≡ 1 (mod GRgQ)
(1)

Because of

16 KAZ-SIGN v1.5



1. WA =
GV GRgQ

W0
, where W0 = gcd(φ(GRg),GV GRgQ) and GV GRgQ ≡ 0 (mod GhGRgQ).

And

2. From the relation
β

φ(φ(GRg)) ≡ β0 (mod φ(GRgQ))

and
β

φ(φ(GRg)) ≡ 1 (mod φ(GRg)).

This implies β φ(φ(GRg)) = β0+φ(GRgQ)k0 for some k0 ∈ Z and β φ(φ(GRg)) = 1+φ(GRg)k1
for some k1 ∈ Z. Since φ(GRgQ)≡ 0 (mod φ(GRg)), we have

β0 −1 = φ(GRg)κ

for some κ ∈ Z. Then, we can have

(β0 −1)WA = φ(GRg)WAκ

And because WA =
GV GRgQ

W0
, where W0 = gcd(φ(GRg),GV GRgQ), we have

(β0 −1)WA ≡ 0 (mod GV GRgQ)

which in turn implies
(β0 −1)WA ≡ 0 (mod GhGRgQ)

because GV GRgQ ≡ 0 (mod GhGRgQ). Hence, (1) is true.

Thus, the signature will fail KAZ-SIGN digital signature forgery detection procedure type
– 5.

For i = 9,10 we will have

w7 ≡ SFih−1 ≡V φ(Q) (mod GRgQ).

Hence, w8 ≡ w7 ·V−φ(Q) ≡ 1 (mod GRgQ) and w9 ≡ wWA
8 ≡ 1 (mod GRgQ). Thus, the sig-

nature will fail KAZ-SIGN digital signature forgery detection procedure type – 5.

For SF11, we can observe

w7 ≡ SF11h−1

≡ (V φ(Q))(h(β
(φ(φ(GRg)))−1 (mod φ(GRgQ)))) (mod GRgQ).
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Hence,

w8 ≡ w7 ·V−φ(Q)

≡ h(β
(φ(φ(GRg)))−1 (mod φ(GRgQ))) (mod GRgQ).

Following through we have,

w9 ≡ wWA
8

≡ h((β
(φ(φ(GRg)))−1)WA (mod φ(GRgQ))

≡ 1 (mod GRgQ)

as explained for (1).

Thus, the signature will fail KAZ-SIGN digital signature forgery detection procedure type
– 5.

8.17 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 6

An adversary utilizing αF ≡ V (mod GRg), random parameters (r0,r1,r2,β ) and sends
either one of the following parameters

SF12 ≡ (α
(φ(GRg)φ(Q)r0+φ(Q))
F )(h(φ(GRg)φ(Q)r1+1)) (mod GRgqQ)

SF13 ≡ (α
(φ(GRg)φ(Q)r0+φ(Q))
F )(h(φ(GRg)φ(Q)r1+1))+GRgQr2 (mod GRgqQ)

SF14 ≡ (α
(φ(GRg)φ(Q)r0+φ(Q))
F )(h(φ(GRg)φ(Q)r1+β

(φ(φ(GRg))) (mod φ(GRgqQ)))) (mod GRgqQ)

SF15 ≡ (α
(φ(GRgQ)r0+φ(Q))
F )(h(φ(GRgQ)r1+1)) (mod GRgqQ)

SF16 ≡ (α
(φ(GRgQ)r0+φ(Q))
F )(h(φ(GRgQ)r1+1))+GRgQr2 (mod GRgqQ)

SF17 ≡ (α
(φ(GRgQ)r0+φ(Q))
F )(h(φ(GRgQ)r1+β

(φ(φ(GRg))) (mod φ(GRgqQ)))) (mod GRgqQ)

would result in SF12,SF13,SF14,SF15,S16,S17 passing steps 81, 82, 83, 84, 84, 85, and 86.
However, since for i = 12,13, we will have

w10 ≡ SFih−1 ≡ (α
(φ(GRg)φ(Q)r0+φ(Q))
F )(h(φ(GRg)φ(Q)r1)) (mod GRgqQ).

Hence, w11 ≡ w10 ·α
−φ(Q)
F ≡ (α

(φ(GRg)φ(Q)r0)
F )(h(φ(GRg)φ(Q)r1)) (mod GRgQ). Following

through we have,

w12 ≡ wWA
11 ≡ (α

(φ(GRg)φ(Q)r0)WA
F )(h(φ(GRg)φ(Q)r1)WA)≡ 1 (mod GRgQ)
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because WA =
GV GRgQ

W0
, where W0 = gcd(φ(GRg),GV GRgQ), and GV GRgQ ≡ 0 (mod GαF GRgQ)

and GV GRgQ ≡ 0 (mod GhGRgQ).

Thus, the signatures will fail KAZ-SIGN digital signature forgery detection procedure type
– 6.

For SF14 we can observe

w10 ≡ SF14h−1

≡ (α
(φ(GRg)φ(Q)r0)+φ(Q)
F )(h(φ(GRg)φ(Q)r1+β

(φ(φ(GRg)))−1 (mod φ(GRgQ)))) (mod GRgQ).

Hence,

w11 ≡ w10 ·α
−φ(Q)
F

≡ (α
(φ(GRg)φ(Q)r0)
F )(h(φ(GRg)φ(Q)r1+β

(φ(φ(GRg)))−1 (mod φ(GRgQ)))) (mod GRgQ).

Following through we have,

w12 ≡ wWA
11

≡ (α
(φ(GRg)φ(Q)r0)WA
F )(h(φ(GRg)φ(Q)r1+β

(φ(φ(GRg)))−1 (mod φ(GRgQ)))WA)

≡ 1 (mod GRgQ).

(2)

Because of

1. WA =
GV GRgQ

W0
, where W0 = gcd(φ(GRg),GV GRgQ), and GV GRgQ ≡ 0 (mod GαF GRgQ)

and GV GRgQ ≡ 0 (mod GhGRgQ).

And

2. From the relation
β

φ(φ(GRg)) ≡ β0 (mod φ(GRgQ))

and
β

φ(φ(GRg)) ≡ 1 (mod φ(GRg)).

This implies β φ(φ(GRg)) = β0+φ(GRgQ)k0 for some k0 ∈ Z and β φ(φ(GRg)) = 1+φ(GRg)k1
for some k1 ∈ Z. Since φ(GRgQ)≡ 0 (mod φ(GRg)), we have

β0 −1 = φ(GRg)κ

for some κ ∈ Z. Then, we can have

(β0 −1)WA = φ(GRg)WAκ.
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And because WA =
GV GRgQ

W0
, where W0 = gcd(φ(GRg),GV GRgQ), we have

(β0 −1)WA ≡ 0 (mod GV GRgQ)

which in turn implies
(β0 −1)WA ≡ 0 (mod GhGRgQ)

because GV GRgQ ≡ 0 (mod GhGRgQ). Hence, (2) is true.

Thus, the signature will fail KAZ-SIGN digital signature forgery detection procedure type
– 6.

For i = 15,16 we will have

w10 ≡ SFih−1 ≡ α
φ(Q)
F (mod GRgQ).

Hence, w11 ≡ w10 ·α
−φ(Q)
F ≡ 1 (mod GRgQ) and w12 ≡ wWA

11 ≡ 1 (mod GRgQ). Thus, the
signature will fail KAZ-SIGN digital signature forgery detection procedure type – 6.

For SF17, we can observe

w10 ≡ SF17h−1

≡ (α
φ(Q)
F )(h(β

(φ(φ(GRg)))−1 (mod φ(GRgQ)))) (mod GRgQ).

Hence,

w11 ≡ w10 ·α
−φ(Q)
F

≡ h(β
(φ(φ(GRg)))−1 (mod φ(GRgQ))) (mod GRgQ).

Following through we have,

w12 ≡ wWA
11

≡ h((β
(φ(φ(GRg)))−1)WA (mod φ(GRgQ))

≡ 1 (mod GRgQ).

as explained for (1).

Thus, the signature will fail KAZ-SIGN digital signature forgery detection procedure type
– 6.
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8.18 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 7

An adversary utilizing V or αF ≡V (mod GRg), and random parameters (r0,r1,r2,r3) and
sends either the parameter

1. SF18 ≡ (V (φ(GRgQ)r0+φ(Q))(h(φ(GRgQ)r1+1))+GRgr2 (mod GRgqQ)

2. SF19 ≡ (V (φ(GRgQ)r0+φ(Q)(1+GRgr2)))(h(φ(GRgQ)r1+1))+GRgr3 (mod GRgqQ) OR

3. SF20 ≡ (α
(φ(GRgQ)r0+φ(Q)
F )(h(φ(GRgQ)r1+1))+GRgr2 (mod GRgqQ)

4. SF21 ≡ (α
(φ(GRgQ)r0+φ(Q)(1+GRgr2))
F )(h(φ(GRgQ)r1+1))+GRgr3 (mod GRgqQ)

would result in SF18, SF19, SF20 and SF21 passing steps 81, 82, 83, 84, 84, 85, and 86.

However, since for i = 18,19,20,21, we will have

w13 ≡ SFih−1 ≡ (h+GRgr2)h−1 ̸≡ 1 (mod Q).

Thus, the signatures will fail KAZ-SIGN digital signature forgery detection procedure type
– 7.

8.19 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 8

Let γ = gcd(Q,GRg) where γ > 1. And adversary could conduct the CRT upon the system
of equations given by

SF20 ≡ h (mod
Q
γ
) (3)

SF20 ≡ h(V φ(Q)) (mod GRg) (4)

OR

SF21 ≡ h (mod
Q
γ
) (5)

SF21 ≡ h(αφ(Q)
F ) (mod GRg). (6)

Conducting the CRT upon (3) and (4) would result in

SF20 ≡ h(V φ(Q)) (mod
QGRg

γ
). (7)
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Conducting the CRT upon (5) and (6) would result in

SF21 ≡ h(αφ(Q)
F ) (mod

QGRg

γ
). (8)

Since QGRg
γ

≡ 0 (mod Q), for i = 20,21 we will have

SFi ≡ h (mod Q)

SFi ≡ h(V φ(Q)) (mod GRg)

that would result in SF20 and SF21 passing steps 81, 82, 83, 84, 85, and 86. However, for
i = 20,21 we will have

w16 ≡ SWB
Fi −hWB ̸≡ 0 (mod GRgQ)

due to operation on different groups
ZQGRg

γ
and ZGRgQ.

Thus, the signatures will fail KAZ-SIGN digital signature forgery detection procedure type
– 8.

8.20 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 9 and type – 10

It is clear that steps 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, and 75 during verification would produce forged signature
that passes steps 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, and 61.

However, these signatures will fail KAZ-SIGN digital signature forgery detection proce-
dure type – 9 and type – 10.

8.21 Extracting α

An approach to forge the signature would be to produce either one of the following:

1. yα1 ≡ α (mod GRgqQ) OR

2. yα2 ≡ α(φ(GRgQ)r0+φ(Q)) (mod GRgqQ) for some random value r0.

8.21.1 Producing yα1 ≡ α (mod GRgqQ)

From the public parameter V ≡ α (mod GRgq) and adversary can produce:
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1. α (mod GRgq)

2. α (mod GRg)

3. α (mod q).

Thus, the adversary needs to obtain the corresponding parameters to execute the Chinese
Remainder Theorem (CRT) to obtain α (mod GRgqQ).

1. α (mod Q)→ to execute CRT with α (mod GRgq)

2. α (mod qQ)→ to execute CRT with α (mod GRg)

3. α (mod GRgQ)→ to execute CRT with α (mod q).

8.21.1.1 To obtain α (mod Q)

To obtain α (mod Q), the adversary will utilize equation S. Observe that

S ≡ (h(β
(φ(φ(GRg))) (mod φ(Q)))) ̸≡ α (mod Q)

Thus, this option is not viable.

8.21.1.2 To obtain α (mod qQ)

To obtain α (mod qQ), the adversary will utilize equation S. Observe that

S ≡ (α(φ(GRgQ)r0+φ(Q)))(h((φ(GRgQ)r1+β
(φ(φ(GRg))) (mod φ(GRgqQ)))) ̸≡ α (mod qQ)

Thus, this option is not viable.

8.21.1.3 To obtain α (mod GRgQ)

To obtain α (mod GRgQ), the adversary will utilize equation S. Observe that

S ≡ (α(φ(Q)))(h(β
(φ(φ(GRg))) (mod φ(GRgQ)))) ̸≡ α (mod GRgQ)

Thus, this option is not viable.
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8.21.2 Producing yα2 ≡ α(φ(GRgQ)r0+φ(Q)) (mod GRgqQ)

An adversary is able to produce yα2 when the value of β is known. Let us assume β = 1.
The adversary would have the following relations:

z1 ≡ Sh−1 ≡ α
(φ(Q)) (mod GRgQ).

Observe that
gcd(φ(Q),φ(GRgQ) = ω ̸= 1.

As such, the adversary can compute

d =
1

φ(Q)
(mod

φ(GRgQ)

ω
)

Which implies dφ(Q) = 1+ φ(GRgQ)
ω

t for some t ∈ Z. Hence, the adversary will obtain

z2 ≡ zd
1 ≡ α

dφ(Q) ≡ α
1+

φ(GRgQ)

ω
t (mod GRgQ).

With an arbitrary chosen value r0 and under the condition that φ(Q) ≡ 0 (mod ω), the
adversary would proceed to compute the following 2 relations:

z3 ≡ z(φ(GRgQ)r0+φ(Q))
2 ≡ α

(φ(GRgQ)r0+φ(Q))+
φ(GRgQ)

ω
t(φ(GRgQ)r0+φ(Q))

≡ α
(φ(GRgQ)r0+φ(Q)) (mod GRgQ)

z4 ≡V (φ(GRgQ)r0+φ(Q)) ≡ α
(φ(GRgQ)r0+φ(Q)) (mod q)

Then upon conducting the CRT on the pair (z3,z4), will result in

z5 ≡ α
(φ(GRgQ)r0)+φ(Q)) (mod GRgqQ).

Hence, obtaining yα2. However, the assumption that secret β is known has to be fulfilled
first.

8.22 Modular linear equation of S

In this direction we analyze

S ≡ (α(φ(GRgQ)r0+φ(Q)))(h(φ(GRgQ)r1+β
(φ(φ(GRg))) (mod φ(GRgqQ)))) (mod GRgqQ)

Let

1. X1 ≡ α(φ(GRgQ)r0+φ(Q)) (mod GRgqQ)

2. X2 ≡ (h(φ(GRgQ)r1+β
(φ(φ(GRg))) (mod φ(GRgqQ)))) (mod GRgqQ)
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Moving forward we have,

X1X2 −S ≡ 0 (mod GRgqQ) (9)

Let X̂1 be the upper bound for X1 and X̂2 be the upper bound for X2. From Conjecture 1, if
one has the situation where X̂1X̂2 ≫ GRgqQ, then there is no efficient algorithm to output
all the roots of (9). That is, (9) usually has GRgqQ many solutions, which is exponential in
the bit-size of GRgqQ.

To this end, since both α(φ(GRgQ)r0+φ(Q)) and h(φ(GRgQ)r1+β
(φ(φ(GRg))) (mod φ(GRgqQ)) are expo-

nentially large, it is clear to conclude that X̂1X̂2 ≫GRgqQ. This implies, there is no efficient
algorithm to output all the roots of (9).

8.23 Implementation of the Hidden Number Problem (HNP)

From S, let us denote as follows:

1. x1 ≡ α(φ(GRgQ)r0+φ(Q)) (mod GRgqQ)

2. x2 ≡ φ(GRgQ)r1 +β (φ(φ(GRg))) (mod φ(GRgqQ))

Thus, S can be re-written as

S ≡ (x1)(hx2) (mod GRgqQ) (10)

for unknown pair (x1,x2). It is obvious that (10) is the HNP.

9. SPECIFICATION OF KAZ-SIGN

The challenge faced by the adversary is to retrieve α from V ≡ α (mod GRgq). It is pro-
tected by the MRP. The MRP representation is given as follows:

t =
α −V
GRgq

Due to the strategies during key generation, we have the complexity O(t) = O(q).

As such, the complexity of solving the MRP via V ≡ α (mod GRgq) will be the determin-
ing factor in identifying the suitable key length for each security level.

The following is the security specification for δ = 0.23.
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Number of primes in P ℓ(q) n = ℓ(N) Total security level, k
180 134 1509 128
258 198 2321 192
342 264 3241 256

Table 2

10. IMPLEMENTATION AND PERFORMANCE

10.1 Key Generation, Signing and Verification Time Complexity

It is obvious that the time complexity for all three procedures is in polynomial time.

10.2 Parameter sizes

We provide here information on size of the key and signature based on security level infor-
mation from Table 2 (for δ = 0.23).

NIST
Security

Level

Number of
primes

in P

Security
level,

k

Length of
parameter
N (bits)

Public
key size,

(V,WA,WB) (bits)

Private
key size,
α (bits)

Signature Size
(S,σ)
(bits)

ECC key
size

(bits)

1 180 128 1509
≈ 220+40+32

= 292 ≈ 352 ≈ 690+32 = 722 256

3 258 192 2321
≈ 340+60+64

= 464 ≈ 530 ≈ 1050+32 = 1082 384

5 342 256 3241
≈ 444+64+88

= 596 ≈ 700 ≈ 1390+32 = 1422 521

Table 3

In the direction of the research, we also make comparison to ECC key length for the three
NIST security levels. KAZ-SIGN key length did not achieve its immediate target of having
approximately the same key length as ECC, but further research might find means and
ways.

10.3 Key Generation, Signing and Verification Ease of Implementation

The algebraic structure of KAZ-SIGN has an abundance of programming libraries available
to be utilized. Among them are:

1. GNU Multiple Precision Arithmetic Library (GMP); and

2. Standard C libraries.
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10.4 Key Generation, Signing and Verification Empirical Performance Data

In order to obtain benchmarks, we evaluate our reference implementation on a machine us-
ing GCC Compiler Version 6.3.0 (MinGW.org GCC-6.3.0-1) on Windows 10 Pro, Intel(R)
Core(TM) i7-4710HQ CPU @ 2.50GHz and 8.00 GB RAM (64-bit operating system, x64-
based processor).

We have the following empirical results when conducting 100 key generations, 100 sign-
ings and 100 verifications:

Time (ms)
Security level

Key generation Signing Verification
128 - KAZ1509 4297 531 281
192 - KAZ2321 10047 875 531
256 - KAZ3241 18125 1375 1094

Table 4

11. ADVANTAGES AND LIMITATIONS

As we have seen, KAZ-SIGN can be evaluated through:

1. Key length

2. Speed

3. No verification failure

11.1 Key Length

KAZ-SIGN key length is comparable to non-post quantum algorithms such as ECC and
RSA. For 256-bit security, the KAZ-SIGN key size is approximate 600-bits. ECC would
use 521-bit keys and RSA would use 15360-bit keys.

11.2 Speed

KAZ-SIGN’s speed analysis results stem from the fact that it has short key length to achieve
256-bit security plus its textbook complexity running time for both signing and verifying
is O(n3) where parameter n here is the input length.
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11.3 No verification failure

It is apparent that the execution of KAZ-SIGN parameter suitability detection proce-
dure together with KAZ-SIGN digital signature forgery detection procedure type – 1,
type – 2, type – 3, type – 4, type – 5, type – 6, type – 7, type – 8, type – 9, and type –
10 within the verification procedure will enable the verification computational process by
the recipient to verify or reject a digital signature that was received by the recipient with
probability equal to 1. That is, the probability of verification failure is 0.

11.4 Limitation

As we have seen, limitation of KAZ-SIGN can be evaluated through:

1. Based on unknown problem, the Modular Reduction Problem (MRP)

11.4.1 Based on unknown problem, the Modular Reduction Problem (MRP)

The MRP is not a known hard mathematical problem which is quantum resistant and is sub-
ject to future cryptanalysis success in solving the defined challenge either with a classical
or quantum computer.

12. CLOSING REMARKS

The KAZ-SIGN digital signature exhibits properties that might result in it being a desirable
post quantum signature scheme. In the event that new forgery methodologies are found, as
long as the procedure can also be done by the verifier, then one can add the new forgery
methodology into the verification procedure. At the same time, the same forgery methodol-
ogy can be inserted into the signing procedure in order to eliminate any chances the signer
will produce a signature that will be rejected.

To this end, the security of the MRP is an unknown fact. We opine that, the acceptance of
MRP as a potential quantum resistant hard mathematical problem will come hand in hand
with a secure cryptosystem designed upon it. We welcome all comments on the KAZ-
SIGN digital signature, either findings that nullify its suitability as a post quantum digital
signature scheme or findings that could enhance its deployment and use case in the future.

Finally, we would like to put forward our heartfelt thanks to Prof. Dr. Abderrahmane
Nitaj from Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Basse Nor-
mandie, France for insights, comments, and friendship throughout the process and special
thanks to Prof. Dr. Daniel J. Bernstein from University of Illinois at Chicago, United States
of America who has given his thoughts and efforts throughout versions 1.0 until 1.5β .2 of
KAZ-SIGN.
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13. ILLUSTRATIVE FULL SIZE TEST VECTORS – 1

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
3). That is, P = {3,5,7, . . . ,1087}. In this illustration, we provide a valid KAZ-SIGN
signature S. The valid KAZ-SIGN signature will pass all 7 KAZ-SIGN digital signature
forgery detection procedure types.

N :
16654099924025690560880991628826166333626342440673565018885011847989446733904116
04901732676624210376510769252181354174828223286340057028944019913396694146511184
56372695070769619863131971414241586048862803140660472066532222073534699336595975
34156792443205461406819169388949586947835045093159845504447468775966698021844877
31229941008215513808488975493742420953323598722589641742694189807070615662303109

8627133463296265341987363052884725941333218996085207555 ≈ 21509

g :
6007

Gg :
66425249147392035103359575563682919206231140688573787652572381678879876350990985

890249087277450456295776000 ≈ 2355 ≈ 20.235(1509) ≈ N0.235

R :
6151

GRg :

964284630129748924872876000 ≈ 290 ≈ N0.059

q :
20095598656227189033305960301544288041881

Q :
116431182179248680450031658440253681535
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Key generation

α :
35728447287188866579548597142074865346183592133401962222206191129049361648119313

38447665974422999017187577 ≈ 2351

V :
12041113347417423196411423326686424028381885995465453414757038199577

WA :
1469533186727

WB :
10568862430976285227607327

αF :
741496958222320836580123577

MRP complexity upon t

t =
α −V
GRgq

:

184377511733517544363052733386450922873 ≈ 2128

Signing

h :
79776735220587049571440525922467175573570400741227212455814989620815793975251

r0 :
102778712139004328118940402307833599435848073890568073307809521911017628943807

r1 :
107475675068633532113808768378082886868504532169498556487403543813081924622751
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β :
108199061612480436491931600532549502099493421033904279930457002775665738610319

S :
13733892285867581103702266824538712585156702752194140498445570685474755926856372
9099476697801601975675251

Verification

KAZ-SIGN digital signature forgery detection procedure type – 2

w0 :
0

KAZ-SIGN digital signature forgery detection procedure type – 3

w3 :
67235523807345563523023482326536338744094561597222977613035380000

KAZ-SIGN digital signature forgery detection procedure type – 4

w6 :
88965241133113520290507016834037353577455320277846236927716540000

KAZ-SIGN digital signature forgery detection procedure type – 5

w9 :
90827433257489982376327405407682284714748779297087471260395680001

KAZ-SIGN digital signature forgery detection procedure type – 6

w12 :
41629240243016241922483394145187713827593190511165090994348020001

KAZ-SIGN digital signature forgery detection procedure type – 7

w13 :
1
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KAZ-SIGN digital signature forgery detection procedure type – 8

w16 :
0

KAZ-SIGN digital signature forgery detection procedure type – 9

w18 :
82009559393408921618305076841284040656426552550666040355470740000

KAZ-SIGN digital signature forgery detection procedure type – 10

w20 :
82009559393408921618305076841284040656426552550666040355470740000

Final verification

y1 and y2 :
43668737997361719050693661454056355268870675602026963449199091755758497671352589
94605278332941511870917664149605687492343324742410174612593067384928443847170187
39804485364625835930569319525483983792689626812528808609436769619549493754884455
22621301035004245816351073613862899056045456813429682963080802174934243165880471
23448015341091671486884406782533119364430887903919524345336638541420434708069758
612313394889744894912445850420126353592278551956741423
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14. ILLUSTRATIVE FULL SIZE TEST VECTORS – 2

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
3). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V,W,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS – 1
and SF2 ≡ (V (φ(GRgQ)r0+φ(Q)))(h(φ(GRgQ)r1+1)) (mod GRgqQ). This signature will fail the
KAZ-SIGN digital signature forgery detection procedure type – 3.

r0 :
112244679145025821045929212022420382281083829442885064813534066394335392109232

r1 :
114475449272976211837636387966496782634094368421703212235613376496419952942408

SF2 :
16612260593863145080343955269113499168711368585378784946787743949414720217089527
40335596638760409432815251

KAZ-SIGN digital signature forgery detection procedure type – 3

w3 :
0

Final verification

y1 and y2 :
43668737997361719050693661454056355268870675602026963449199091755758497671352589
94605278332941511870917664149605687492343324742410174612593067384928443847170187
39804485364625835930569319525483983792689626812528808609436769619549493754884455
22621301035004245816351073613862899056045456813429682963080802174934243165880471
23448015341091671486884406782533119364430887903919524345336638541420434708069758
612313394889744894912445850420126353592278551956741423
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15. ILLUSTRATIVE FULL SIZE TEST VECTORS – 3

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
3). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V,W,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS –
1 and SF5 ≡ (α

(φ(GRgQ)r0+φ(Q))
F )(h(φ(GRgQ)r1+1))+GRgQr2 (mod GRgqQ). This signature

will fail the KAZ-SIGN digital signature forgery detection procedure type – 4.

r0 :
98111756911162665626785967136163115932885642468132500927984623822883866391263

r1 :
84193772503294835228974100864409663501569261980922715237505762820164323320384

r2 :
108193448896090665410206794154338018179805019549344488435987947946975885129407

SF5 :
10461818293358804238461711934142607998098074337530753443520010729530935122451185
97032492344502994608215251

KAZ-SIGN digital signature forgery detection procedure type – 4

w6 :
0

Final verification

y1 and y2 :
43668737997361719050693661454056355268870675602026963449199091755758497671352589
94605278332941511870917664149605687492343324742410174612593067384928443847170187
39804485364625835930569319525483983792689626812528808609436769619549493754884455
22621301035004245816351073613862899056045456813429682963080802174934243165880471
23448015341091671486884406782533119364430887903919524345336638541420434708069758
612313394889744894912445850420126353592278551956741423
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16. ILLUSTRATIVE FULL SIZE TEST VECTORS – 4

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
3). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V,W,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS – 1
and SF6 ≡ (V (φ(GRg)φ(Q)r0+φ(Q)))(h(φ(GRg)φ(Q)r1+1)) (mod GRgqQ). This signature will fail
the KAZ-SIGN digital signature forgery detection procedure type – 5.

r0 :
72904856385348070507598490739408847287243928876553958428789569460421229607404

r1 :
97576360963170610028048253836480846790801874957271759262837984265206847910326

SF6 :
12113279606300480032709360166788219391444509347586653337398373520968111923245233
42299463543174397057455251

KAZ-SIGN digital signature forgery detection procedure type – 5

w9 :
1

Final verification

y1 and y2 :
43668737997361719050693661454056355268870675602026963449199091755758497671352589
94605278332941511870917664149605687492343324742410174612593067384928443847170187
39804485364625835930569319525483983792689626812528808609436769619549493754884455
22621301035004245816351073613862899056045456813429682963080802174934243165880471
23448015341091671486884406782533119364430887903919524345336638541420434708069758
612313394889744894912445850420126353592278551956741423
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17. ILLUSTRATIVE FULL SIZE TEST VECTORS – 5

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
3). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V,W,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS – 1
and SF7 ≡ (V (φ(GRg)φ(Q)r0+φ(Q)))(h(φ(GRg)φ(Q)r1+1))+GRgQr2 (mod GRgqQ). This signa-
ture will fail the KAZ-SIGN digital signature forgery detection procedure type – 5.

r0 :
95076104297311640220997398765276141500032645640295259938236002709311204681578

r1 :
96961079850847229654700418659282566633855508469463112251289807913621862707846

r2 :
82069937735852689349013566038023792611815101921530567238750242215410759197387

SF7 :
11778860802393832393800193885090782803169519923619968804232197576389784794303685
93603611405739664010655251

KAZ-SIGN digital signature forgery detection procedure type – 5

w9 :
1

Final verification

y1 and y2 :
43668737997361719050693661454056355268870675602026963449199091755758497671352589
94605278332941511870917664149605687492343324742410174612593067384928443847170187
39804485364625835930569319525483983792689626812528808609436769619549493754884455
22621301035004245816351073613862899056045456813429682963080802174934243165880471
23448015341091671486884406782533119364430887903919524345336638541420434708069758
612313394889744894912445850420126353592278551956741423
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18. ILLUSTRATIVE FULL SIZE TEST VECTORS – 6

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
3). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V,W,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS – 1
and SF8 ≡ (V (φ(GRg)φ(Q)r0+φ(Q)))(h(φ(GRg)φ(Q)r1+β

(φ(φ(GRg))) (mod φ(GRgqQ)))) (mod GRgqQ).
This signature will fail the KAZ-SIGN digital signature forgery detection procedure
type – 5.

r0 :
94082560105547131529016766214334884214406960698420181108238361492050730960340

r1 :
65720427855858752406460327809885015224249315648554701901069574133946112788027

β :
109608379134681605170132951462015515029829900858659860881446129122794343533367

SF8 :
11842767854513774815712574785285792398815475310325737173004721336046288476462102
71890213417455872726555251

KAZ-SIGN digital signature forgery detection procedure type – 5

w9 :
1

Final verification

y1 and y2 :
43668737997361719050693661454056355268870675602026963449199091755758497671352589
94605278332941511870917664149605687492343324742410174612593067384928443847170187
39804485364625835930569319525483983792689626812528808609436769619549493754884455
22621301035004245816351073613862899056045456813429682963080802174934243165880471
23448015341091671486884406782533119364430887903919524345336638541420434708069758
612313394889744894912445850420126353592278551956741423
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19. ILLUSTRATIVE FULL SIZE TEST VECTORS – 7

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
3). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V,W,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS –
1 and SF18 ≡ (V (φ(GRgQ)r0+φ(Q)))(h(φ(GRgQ)r1+1))+GRgQr2 (mod GRgqQ). This signature
will fail the KAZ-SIGN digital signature forgery detection procedure type – 7.

r0 :
111861207963148495300154086022918340777206663801766087260508609191580768030084

r1 :
92495744883881290279807446126046227093833588185909243239783766916137480275025

r2 :
109648844228513019529025961365555930824535275404167239075686417660026746915178

SF18 :
37161343934461884198063220201416093954915925355996493715457387964235336222622610
9547556028566953087163251

KAZ-SIGN digital signature forgery detection procedure type – 7

w13 :
18864552144604672921783988800645039576

Final verification

y1 and y2 :
43668737997361719050693661454056355268870675602026963449199091755758497671352589
94605278332941511870917664149605687492343324742410174612593067384928443847170187
39804485364625835930569319525483983792689626812528808609436769619549493754884455
22621301035004245816351073613862899056045456813429682963080802174934243165880471
23448015341091671486884406782533119364430887903919524345336638541420434708069758
612313394889744894912445850420126353592278551956741423
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20. ILLUSTRATIVE FULL SIZE TEST VECTORS – 8

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
3). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V,W,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS
– 1 and SF20 ≡ h(V φ(Q)) (mod QGRg

γ
). This signature will fail the KAZ-SIGN digital

signature forgery detection procedure type – 8.

γ :
1963788631084825545

SF20 :
44230394190414966033747797635057049559520103251

KAZ-SIGN digital signature forgery detection procedure type – 8

w16 :
−54732936377288187679800732369132839565606419127241890217068732000

Final verification

y1 and y2 :
43668737997361719050693661454056355268870675602026963449199091755758497671352589
94605278332941511870917664149605687492343324742410174612593067384928443847170187
39804485364625835930569319525483983792689626812528808609436769619549493754884455
22621301035004245816351073613862899056045456813429682963080802174934243165880471
23448015341091671486884406782533119364430887903919524345336638541420434708069758
612313394889744894912445850420126353592278551956741423
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21. ILLUSTRATIVE FULL SIZE TEST VECTORS – 9

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
3). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V,W,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS –
1 and SF22 is derived as per steps 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56 during verification. The signature will fail the KAZ-SIGN digital signature forgery
detection procedure type – 9 and type – 10.

SF22 :
11079429630246770173897748468601484162139967084112839915944935251

KAZ-SIGN digital signature forgery detection procedure type – 9

w18 :
0

KAZ-SIGN digital signature forgery detection procedure type – 10

w20 :
0

Final verification

y1 and y2 :
43668737997361719050693661454056355268870675602026963449199091755758497671352589
94605278332941511870917664149605687492343324742410174612593067384928443847170187
39804485364625835930569319525483983792689626812528808609436769619549493754884455
22621301035004245816351073613862899056045456813429682963080802174934243165880471
23448015341091671486884406782533119364430887903919524345336638541420434708069758
612313394889744894912445850420126353592278551956741423
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